@@ -23,7 +23,8 @@ The following topics are available:
2323* `1.10. Input Files `_
2424
2525You can also perform this example analysis entirely in the Ansys
26- Mechanical Application. For more information, see Brake-Squeal Analysis in the Workbench Technology Showcase: Example Problems.
26+ Mechanical Application. For more information, see Brake-Squeal Analysis in the
27+ Workbench Technology Showcase: Example Problems.
2728
28291.1. Introduction
2930-----------------
@@ -97,11 +98,11 @@ The following modeling topics are available:
9798Brake-squeal problems typically require manual calculations of the unsymmetric
9899terms arising from sources such as frictional sliding, and then inputting the
99100unsymmetric terms using special elements (such as
100- MATRIX27). It is a tedious process requiring a matched mesh
101+ `` MATRIX27 `` ). It is a tedious process requiring a matched mesh
101102at the disc-pad interface along with assumptions related to the amount of area in
102103contact and sliding.
103104
104- 3-D contact elements (CONTA17x) offer a more efficient alternative by modeling
105+ 3-D contact elements (`` CONTA17x `` ) offer a more efficient alternative by modeling
105106surface-to-surface contact at the pad-disc interface. With contact
106107surface-to-surface contact elements, a matched mesh is unnecessary at the
107108contact-target surface, and there is no need to calculate the unsymmetric
@@ -142,29 +143,31 @@ nodal point (normal-to-target surface) for MPC bonded contact pairs.
1421431.3.3. Generating Internal Sliding Motion
143144^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
144145
145- The **CMROTATE ** command defines constant rotational velocities on
146+ The :meth: `Mapdl.cmrotate() <ansys.mapdl.core.Mapdl.cmrotate> `
147+ command defines constant rotational velocities on
146148the contact/target nodes to generate internal sliding motion. The specified
147149rotational velocity is used only to determine the sliding direction and has no
148150effect on the final solution. The element component used should include only the
149151contact or the target elements that are on the brake disc/rotor. In this example,
150152the target elements are defined on the disc surface and the contact elements are
151153defined on the pad surface. The target elements attached to the disc surface are
152154grouped to form a component named E\_ ROTOR which is then later specified on the
153- **CMROTATE ** command to generate a sliding frictional force.
155+ :meth: `Mapdl.cmrotate() <ansys.mapdl.core.Mapdl.cmrotate> `
156+ command to generate a sliding frictional force.
154157
1551581.3.4. Meshing the Brake Disc-Pad Model
156159^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
157160
158161The sweep method is used to generate a hexahedral dominant mesh of the brake
159162system assembly. Brake discs, pads and all other associated components are meshed
160- with 20-node structural solid SOLID186 elements with
163+ with 20-node structural solid `` SOLID186 `` elements with
161164uniform reduced-integration element technology. The edge sizing tool is used to
162165obtains a refined mesh at the pad-disc interface to improve the solution accuracy.
163166For problems with a large unsymmetric coefficient, a finer mesh should be used at
164167the pad-disc interface to accurately predict the unstable modes.
165- CONTA174 (3-D 8 node surface to surface contact)
168+ `` CONTA174 `` (3-D 8 node surface to surface contact)
166169elements are used to define the contact surface and
167- TARGE170 (3-D target segment) elements are used to
170+ `` TARGE170 `` (3-D target segment) elements are used to
168171define the target surface. The brake disc-pad assembly is meshed with total of 60351
169172nodes and 11473 elements.
170173
@@ -287,13 +290,14 @@ is based on the initial contact status.
287290Following is the process for solving a brake-squeal problem using this method:
288291
2892921. Perform a linear partial-element analysis with no prestress effects.
290- 2. Generate the unsymmetric stiffness matrix (**NROPT **,UNSYM).
291- 3. Generate sliding frictional force (**CMROTATE **).
292- 4. Perform a complex modal analysis using the QRDAMP or UNSYM eigensolver.
293+ 2. Generate the unsymmetric stiffness matrix
294+ (:meth: `Mapdl.nropt("UNSYM") <ansys.mapdl.core.Mapdl.nropt> `).
295+ 3. Generate sliding frictional force (:meth: `Mapdl.cmrotate() <ansys.mapdl.core.Mapdl.cmrotate> `).
296+ 4. Perform a complex modal analysis using the QRDAMP or UNSYM eigensolver.
293297
294298 When using the QRDAMP solver, you can reuse the symmetric
295299 eigensolution from the previous load steps
296- (** QRDOPT ** ), effective when performing a friction-
300+ (:meth: ` Mapdl.qrdopt() <ansys.mapdl.core.Mapdl.qrdopt> ` ), effective when performing a friction-
297301 sensitive/parametric analysis, as it saves time by not recalculating the
298302 real symmetric modes after the first solve operation.
299303
@@ -366,11 +370,11 @@ prestressed matrix is generated at the end of the first static solution.
366370Following is the process for solving a brake-squeal problem using this method:
367371
3683721. Perform a nonlinear, large-deflection static analysis
369- (** NLGEOM **,ON ).
373+ (:meth: ` Mapdl.nlgeom("ON") <ansys.mapdl.core.Mapdl.nlgeom> ` ).
370374
371375 Use the unsymmetric Newton-Raphson method
372- (** NROPT **, UNSYM). Specify the restart control points needed
373- for the linear perturbation analysis (** RESCONTROL ** )
376+ (:meth: ` Mapdl.nropt(" UNSYM") <ansys.mapdl.core.Mapdl.nropt> ` ). Specify the restart control points needed
377+ for the linear perturbation analysis (:meth: ` Mapdl.rescontrol() <ansys.mapdl.core.Mapdl.rescontrol> ` )
374378
375379 Create components for use in the next step.
376380
@@ -379,26 +383,26 @@ Following is the process for solving a brake-squeal problem using this method:
379383
3803842. Restart the previous static solution from the desired load step and
381385 substep, and perform the first phase of the perturbation analysis while
382- preserving the **.ldhi **, **.rnnn ** and **.rst ** files (** ANTYPE **, STATIC, RESTART,,, PERTURB).
386+ preserving the **.ldhi **, **.rnnn ** and **.rst ** files (:meth: ` Mapdl.antype(" STATIC", " RESTART", "", "", " PERTURB") <ansys.mapdl.core.Mapdl.antype> ` ).
383387
384388 Initiate a modal linear perturbation analysis
385- (** PERTURB **, MODAL).
389+ (:meth: ` Mapdl.perturb(" MODAL") <ansys.mapdl.core.Mapdl.perturb> ` ).
386390
387- Generate forced frictional sliding contact (** CMROTATE ** ),
391+ Generate forced frictional sliding contact (:meth: ` Mapdl.cmrotate() <ansys.mapdl.core.Mapdl.cmrotate> ` ),
388392 specifying the component names created in the previous step.
389393
390394 The contact stiffness matrix is based only on the contact status at the
391395 restart point.
392396
393397 Regenerate the element stiffness matrix at the end of the first phase of
394- the linear perturbation solution (** SOLVE **, ELFORM).
398+ the linear perturbation solution (:meth: ` Mapdl.solve(" ELFORM") <ansys.mapdl.core.Mapdl.solve> ` ).
395399
3964003. Obtain the linear perturbation modal solution using the QRDAMP or UNSYM
397- eigensolver (** MODOPT ** ).
401+ eigensolver (:meth: ` Mapdl.modopt() <ansys.mapdl.core.Mapdl.modopt> ` ).
398402
399403 When using the QRDAMP solver, you can reuse the symmetric
400404 eigensolution from the previous load steps
401- (** QRDOPT ** ), effective when performing a
405+ (:meth: ` Mapdl.qrdopt() <ansys.mapdl.core.Mapdl.qrdopt> ` ), effective when performing a
402406 friction-sensitive/parametric analysis, as it saves time by not
403407 recalculating the real symmetric modes after the first solve
404408 operation.
@@ -535,24 +539,29 @@ the brake-squeal problem. This method uses Newton-Raphson iterations for *both*
535539Following is the process for solving a brake-squeal problem using this method:
536540
5375411. Perform a nonlinear, large-deflection static analysis
538- (**NLGEOM **,ON). Use the unsymmetric Newton-Raphson method (**NROPT **,UNSYM).
539- Specify the restart control points needed for the linear perturbation analysis (**RESCONTROL **).
542+ (:meth: `Mapdl.nlgeom("ON") <ansys.mapdl.core.Mapdl.nlgeom> `).
543+ Use the unsymmetric Newton-Raphson method (:meth: `Mapdl.nropt("UNSYM") <ansys.mapdl.core.Mapdl.nropt> `).
544+ Specify the restart control points needed for the linear perturbation analysis
545+ (:meth: `Mapdl.rescontrol() <ansys.mapdl.core.Mapdl.rescontrol> `).
540546
541- 2. Perform a full second static analysis. Generate sliding contact (**CMROTATE **) to form an unsymmetric stiffness matrix.
547+ 2. Perform a full second static analysis. Generate sliding contact
548+ (:meth: `Mapdl.cmrotate() <ansys.mapdl.core.Mapdl.cmrotate> `) to form an unsymmetric stiffness matrix.
542549
5435503. After obtaining the second static solution, postprocess the contact results.
544551 Determine the status (that is, whether the elements are sliding, and the sliding distance, if any).
545552
546- 4. Restart the previous static solution from the desired load step and substep, and perform the first phase of the perturbation analysis while
547- preserving the **.ldhi **, **.rnnn ** and **.rst ** files (**ANTYPE **,STATIC,RESTART,,,PERTURB).
553+ 4. Restart the previous static solution from the desired load step and substep, and perform the first
554+ phase of the perturbation analysis while preserving the **.ldhi **, **.rnnn ** and
555+ **.rst ** files (:meth: `Mapdl.antype("STATIC", "RESTART",,, "PERTURB") <ansys.mapdl.core.Mapdl.antype> `).
548556
549557 Initiate a modal linear perturbation analysis
550- (** PERTURB **, MODAL).
558+ (:meth: ` Mapdl.perturb(" MODAL") <ansys.mapdl.core.Mapdl.perturb> ` ).
551559
552560 Regenerate the element stiffness matrix at the end of the first phase of
553- the linear perturbation solution (** SOLVE **, ELFORM).
561+ the linear perturbation solution (:meth: ` Mapdl.solve(" ELFORM") <ansys.mapdl.core.Mapdl.solve> ` ).
554562
555- 5. Obtain the linear perturbation modal solution using the QRDAMP or UNSYM eigensolver (**MODOPT **).
563+ 5. Obtain the linear perturbation modal solution using the QRDAMP or UNSYM eigensolver
564+ (:meth: `Mapdl.modopt() <ansys.mapdl.core.Mapdl.modopt> `).
556565
5575666. Expand the modes and postprocess the results (from the **Jobname.RSTP ** file).
558567 The following inputs show the solution steps involved with this method:
@@ -683,7 +692,8 @@ Following is the process for solving a brake-squeal problem using this method:
683692---------------------------
684693
685694The unstable mode predictions for the brake disc-pad assembly using all three methods
686- were very close due to the relatively small prestress load. The `1.6.1. Linear Non-prestressed Modal Analysis `_ predicted
695+ were very close due to the relatively small prestress load.
696+ The `1.6.1. Linear Non-prestressed Modal Analysis `_ predicted
687697unstable modes at 6474 Hz, while the other two solution methods predicted unstable modes
688698at 6470 Hz.
689699
@@ -806,7 +816,7 @@ frequency close to 6470 Hz.
806816A parametric study was performed on the brake disc model using a linear
807817non-prestressed modal solution with an increasing coefficient of friction. QRDAMP
808818eigensolver is used to perform the parametric studies by reusing the symmetric real
809- modes (** QRDOPT **,ON ) obtained in the first load
819+ modes (:meth: ` Mapdl.qrdopt("ON") <ansys.mapdl.core.Mapdl.qrdopt> ` ) obtained in the first load
810820step.
811821
812822The following plot suggests that modes with similar characteristics approach each
@@ -886,7 +896,7 @@ use for a brake-squeal problem:
886896+-----------------------------------+----------------------------------------------------------+----------------------------------------------+
887897
888898The following table provides guidelines for selecting the optimal eigensolver
889- (** MODOPT ** ) for obtaining the brake-squeal solution:
899+ (:meth: ` Mapdl.modopt() <ansys.mapdl.core.Mapdl.modopt> ` ) for obtaining the brake-squeal solution:
890900
891901
892902
0 commit comments