|
64 | 64 | >>> pc.min(arr1) |
65 | 65 | <pyarrow.Int64Scalar: 1> |
66 | 66 |
|
67 | | - Using `skip_nulls` to handle null values. |
| 67 | + Using ``skip_nulls`` to handle null values. |
68 | 68 |
|
69 | 69 | >>> arr2 = pa.array([1.0, None, 2.0, 3.0]) |
70 | 70 | >>> pc.min(arr2) |
71 | 71 | <pyarrow.DoubleScalar: 1.0> |
72 | 72 | >>> pc.min(arr2, skip_nulls=False) |
73 | 73 | <pyarrow.DoubleScalar: None> |
74 | 74 |
|
75 | | - Using `ScalarAggregateOptions` to control minimum number of non-null values. |
| 75 | + Using ``ScalarAggregateOptions`` to control minimum number of non-null values. |
76 | 76 |
|
77 | 77 | >>> arr3 = pa.array([1.0, None, float("nan"), 3.0]) |
78 | 78 | >>> pc.min(arr3) |
|
98 | 98 | >>> pc.max(arr1) |
99 | 99 | <pyarrow.Int64Scalar: 3> |
100 | 100 |
|
101 | | - Using `skip_nulls` to handle null values. |
| 101 | + Using ``skip_nulls`` to handle null values. |
102 | 102 |
|
103 | 103 | >>> arr2 = pa.array([1.0, None, 2.0, 3.0]) |
104 | 104 | >>> pc.max(arr2) |
105 | 105 | <pyarrow.DoubleScalar: 3.0> |
106 | 106 | >>> pc.max(arr2, skip_nulls=False) |
107 | 107 | <pyarrow.DoubleScalar: None> |
108 | 108 |
|
109 | | - Using `ScalarAggregateOptions` to control minimum number of non-null values. |
| 109 | + Using ``ScalarAggregateOptions`` to control minimum number of non-null values. |
110 | 110 |
|
111 | 111 | >>> arr3 = pa.array([1.0, None, float("nan"), 3.0]) |
112 | 112 | >>> pc.max(arr3) |
|
132 | 132 | >>> pc.min_max(arr1) |
133 | 133 | <pyarrow.StructScalar: [('min', 1), ('max', 3)]> |
134 | 134 |
|
135 | | - Using `skip_nulls` to handle null values. |
| 135 | + Using ``skip_nulls`` to handle null values. |
136 | 136 |
|
137 | 137 | >>> arr2 = pa.array([1.0, None, 2.0, 3.0]) |
138 | 138 | >>> pc.min_max(arr2) |
139 | 139 | <pyarrow.StructScalar: [('min', 1.0), ('max', 3.0)]> |
140 | 140 | >>> pc.min_max(arr2, skip_nulls=False) |
141 | 141 | <pyarrow.StructScalar: [('min', None), ('max', None)]> |
142 | 142 |
|
143 | | - Using `ScalarAggregateOptions` to control minimum number of non-null values. |
| 143 | + Using ``ScalarAggregateOptions`` to control minimum number of non-null values. |
144 | 144 |
|
145 | 145 | >>> arr3 = pa.array([1.0, None, float("nan"), 3.0]) |
146 | 146 | >>> pc.min_max(arr3) |
|
0 commit comments