|  | 
| 28 | 28 | # The dictionary keys represent column names and the dictionary values | 
| 29 | 29 | # represent column values | 
| 30 | 30 | df = ctx.from_pydict({"a": [1, 2, 3], "b": [4, 5, 6]}) | 
| 31 |  | -assert type(df) == datafusion.DataFrame | 
|  | 31 | +assert type(df) is datafusion.DataFrame | 
| 32 | 32 | # Dataframe: | 
| 33 | 33 | # +---+---+ | 
| 34 | 34 | # | a | b | | 
|  | 
| 40 | 40 | 
 | 
| 41 | 41 | # Create a datafusion DataFrame from a Python list of rows | 
| 42 | 42 | df = ctx.from_pylist([{"a": 1, "b": 4}, {"a": 2, "b": 5}, {"a": 3, "b": 6}]) | 
| 43 |  | -assert type(df) == datafusion.DataFrame | 
|  | 43 | +assert type(df) is datafusion.DataFrame | 
| 44 | 44 | 
 | 
| 45 | 45 | # Convert pandas DataFrame to datafusion DataFrame | 
| 46 | 46 | pandas_df = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]}) | 
| 47 | 47 | df = ctx.from_pandas(pandas_df) | 
| 48 |  | -assert type(df) == datafusion.DataFrame | 
|  | 48 | +assert type(df) is datafusion.DataFrame | 
| 49 | 49 | 
 | 
| 50 | 50 | # Convert polars DataFrame to datafusion DataFrame | 
| 51 | 51 | polars_df = pl.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]}) | 
| 52 | 52 | df = ctx.from_polars(polars_df) | 
| 53 |  | -assert type(df) == datafusion.DataFrame | 
|  | 53 | +assert type(df) is datafusion.DataFrame | 
| 54 | 54 | 
 | 
| 55 | 55 | # Convert Arrow Table to datafusion DataFrame | 
| 56 | 56 | arrow_table = pa.Table.from_pydict({"a": [1, 2, 3], "b": [4, 5, 6]}) | 
| 57 | 57 | df = ctx.from_arrow(arrow_table) | 
| 58 |  | -assert type(df) == datafusion.DataFrame | 
|  | 58 | +assert type(df) is datafusion.DataFrame | 
0 commit comments