diff --git a/docs/layouts/shortcodes/generated/auto_scaler_configuration.html b/docs/layouts/shortcodes/generated/auto_scaler_configuration.html index ab2bbcb283..3c12ee1087 100644 --- a/docs/layouts/shortcodes/generated/auto_scaler_configuration.html +++ b/docs/layouts/shortcodes/generated/auto_scaler_configuration.html @@ -98,6 +98,24 @@ Duration Scaling metrics aggregation window size. + +
job.autoscaler.observed-scalability.coefficient-min
+ 0.5 + Double + Minimum allowed value for the observed scalability coefficient. Prevents aggressive scaling by clamping low coefficient estimates. If the estimated coefficient falls below this value, it is capped at the configured minimum. + + +
job.autoscaler.observed-scalability.enabled
+ false + Boolean + Enables the use of an observed scalability coefficient when computing target parallelism. If enabled, the system will estimate the scalability coefficient based on historical scaling data instead of assuming perfect linear scaling. This helps account for real-world inefficiencies such as network overhead and coordination costs. + + +
job.autoscaler.observed-scalability.min-observations
+ 3 + Integer + Defines the minimum number of historical scaling observations required to estimate the scalability coefficient. If the number of available observations is below this threshold, the system falls back to assuming linear scaling. Note: To effectively use a higher minimum observation count, you need to increase job.autoscaler.history.max.count. Avoid setting job.autoscaler.history.max.count to a very high value, as the number of retained data points is limited by the size of the state store—particularly when using Kubernetes-based state store. +
job.autoscaler.observed-true-processing-rate.lag-threshold
30 s diff --git a/flink-autoscaler/src/main/java/org/apache/flink/autoscaler/JobVertexScaler.java b/flink-autoscaler/src/main/java/org/apache/flink/autoscaler/JobVertexScaler.java index 4c185f89ea..492615f402 100644 --- a/flink-autoscaler/src/main/java/org/apache/flink/autoscaler/JobVertexScaler.java +++ b/flink-autoscaler/src/main/java/org/apache/flink/autoscaler/JobVertexScaler.java @@ -34,11 +34,15 @@ import org.slf4j.Logger; import org.slf4j.LoggerFactory; +import java.math.BigDecimal; +import java.math.RoundingMode; import java.time.Clock; import java.time.Duration; import java.time.Instant; import java.time.ZoneId; +import java.util.ArrayList; import java.util.Collection; +import java.util.List; import java.util.Map; import java.util.Objects; import java.util.SortedMap; @@ -46,6 +50,8 @@ import static org.apache.flink.autoscaler.JobVertexScaler.KeyGroupOrPartitionsAdjustMode.MAXIMIZE_UTILISATION; import static org.apache.flink.autoscaler.config.AutoScalerOptions.MAX_SCALE_DOWN_FACTOR; import static org.apache.flink.autoscaler.config.AutoScalerOptions.MAX_SCALE_UP_FACTOR; +import static org.apache.flink.autoscaler.config.AutoScalerOptions.OBSERVED_SCALABILITY_ENABLED; +import static org.apache.flink.autoscaler.config.AutoScalerOptions.OBSERVED_SCALABILITY_MIN_OBSERVATIONS; import static org.apache.flink.autoscaler.config.AutoScalerOptions.SCALE_DOWN_INTERVAL; import static org.apache.flink.autoscaler.config.AutoScalerOptions.SCALING_EVENT_INTERVAL; import static org.apache.flink.autoscaler.config.AutoScalerOptions.SCALING_KEY_GROUP_PARTITIONS_ADJUST_MODE; @@ -178,6 +184,13 @@ public ParallelismChange computeScaleTargetParallelism( LOG.debug("Target processing capacity for {} is {}", vertex, targetCapacity); double scaleFactor = targetCapacity / averageTrueProcessingRate; + if (conf.get(OBSERVED_SCALABILITY_ENABLED)) { + + double scalingCoefficient = + JobVertexScaler.calculateObservedScalingCoefficient(history, conf); + + scaleFactor = scaleFactor / scalingCoefficient; + } double minScaleFactor = 1 - conf.get(MAX_SCALE_DOWN_FACTOR); double maxScaleFactor = 1 + conf.get(MAX_SCALE_UP_FACTOR); if (scaleFactor < minScaleFactor) { @@ -236,6 +249,83 @@ public ParallelismChange computeScaleTargetParallelism( delayedScaleDown); } + /** + * Calculates the scaling coefficient based on historical scaling data. + * + *

The scaling coefficient is computed using the least squares approach. If there are not + * enough observations, or if the computed coefficient is invalid, a default value of {@code + * 1.0} is returned, assuming linear scaling. + * + * @param history A {@code SortedMap} of {@code Instant} timestamps to {@code ScalingSummary} + * @param conf Deployment configuration. + * @return The computed scaling coefficient. + */ + @VisibleForTesting + protected static double calculateObservedScalingCoefficient( + SortedMap history, Configuration conf) { + /* + * The scaling coefficient is computed using the least squares approach + * to fit a linear model: + * + * R_i = β * P_i * α + * + * where: + * - R_i = observed processing rate + * - P_i = parallelism + * - β = baseline processing rate + * - α = scaling coefficient to optimize + * + * The optimization minimizes the **sum of squared errors**: + * + * Loss = ∑ (R_i - β * α * P_i)^2 + * + * Differentiating w.r.t. α and solving for α: + * + * α = ∑ (P_i * R_i) / (∑ (P_i^2) * β) + * + * We keep the system conservative for higher returns scenario by clamping computed α to an upper bound of 1.0. + */ + + var minObservations = conf.get(OBSERVED_SCALABILITY_MIN_OBSERVATIONS); + + // not enough data to compute scaling coefficient; we assume linear scaling. + if (history.isEmpty() || history.size() < minObservations) { + return 1.0; + } + + var baselineProcessingRate = AutoScalerUtils.computeBaselineProcessingRate(history); + + if (Double.isNaN(baselineProcessingRate)) { + return 1.0; + } + + List parallelismList = new ArrayList<>(); + List processingRateList = new ArrayList<>(); + + for (Map.Entry entry : history.entrySet()) { + ScalingSummary summary = entry.getValue(); + double parallelism = summary.getCurrentParallelism(); + double processingRate = summary.getMetrics().get(TRUE_PROCESSING_RATE).getAverage(); + + if (Double.isNaN(processingRate)) { + LOG.warn( + "True processing rate is not available in scaling history. Cannot compute scaling coefficient."); + return 1.0; + } + + parallelismList.add(parallelism); + processingRateList.add(processingRate); + } + + double lowerBound = conf.get(AutoScalerOptions.OBSERVED_SCALABILITY_COEFFICIENT_MIN); + + var coefficient = + AutoScalerUtils.optimizeLinearScalingCoefficient( + parallelismList, processingRateList, baselineProcessingRate, 1, lowerBound); + + return BigDecimal.valueOf(coefficient).setScale(2, RoundingMode.CEILING).doubleValue(); + } + private ParallelismChange detectBlockScaling( Context context, JobVertexID vertex, diff --git a/flink-autoscaler/src/main/java/org/apache/flink/autoscaler/config/AutoScalerOptions.java b/flink-autoscaler/src/main/java/org/apache/flink/autoscaler/config/AutoScalerOptions.java index 980db2f4cc..a67bfd505c 100644 --- a/flink-autoscaler/src/main/java/org/apache/flink/autoscaler/config/AutoScalerOptions.java +++ b/flink-autoscaler/src/main/java/org/apache/flink/autoscaler/config/AutoScalerOptions.java @@ -382,4 +382,40 @@ private static ConfigOptions.OptionBuilder autoScalerConfig(String key) { "scaling.key-group.partitions.adjust.mode")) .withDescription( "How to adjust the parallelism of Source vertex or upstream shuffle is keyBy"); + + public static final ConfigOption OBSERVED_SCALABILITY_ENABLED = + autoScalerConfig("observed-scalability.enabled") + .booleanType() + .defaultValue(false) + .withFallbackKeys(oldOperatorConfigKey("observed-scalability.enabled")) + .withDescription( + "Enables the use of an observed scalability coefficient when computing target parallelism. " + + "If enabled, the system will estimate the scalability coefficient based on historical scaling data " + + "instead of assuming perfect linear scaling. " + + "This helps account for real-world inefficiencies such as network overhead and coordination costs."); + + public static final ConfigOption OBSERVED_SCALABILITY_MIN_OBSERVATIONS = + autoScalerConfig("observed-scalability.min-observations") + .intType() + .defaultValue(3) + .withFallbackKeys(oldOperatorConfigKey("observed-scalability.min-observations")) + .withDescription( + "Defines the minimum number of historical scaling observations required to estimate the scalability coefficient. " + + "If the number of available observations is below this threshold, the system falls back to assuming linear scaling. " + + "Note: To effectively use a higher minimum observation count, you need to increase " + + VERTEX_SCALING_HISTORY_COUNT.key() + + ". Avoid setting " + + VERTEX_SCALING_HISTORY_COUNT.key() + + " to a very high value, as the number of retained data points is limited by the size of the state store—" + + "particularly when using Kubernetes-based state store."); + + public static final ConfigOption OBSERVED_SCALABILITY_COEFFICIENT_MIN = + autoScalerConfig("observed-scalability.coefficient-min") + .doubleType() + .defaultValue(0.5) + .withFallbackKeys(oldOperatorConfigKey("observed-scalability.coefficient-min")) + .withDescription( + "Minimum allowed value for the observed scalability coefficient. " + + "Prevents aggressive scaling by clamping low coefficient estimates. " + + "If the estimated coefficient falls below this value, it is capped at the configured minimum."); } diff --git a/flink-autoscaler/src/main/java/org/apache/flink/autoscaler/utils/AutoScalerUtils.java b/flink-autoscaler/src/main/java/org/apache/flink/autoscaler/utils/AutoScalerUtils.java index 411ab9b20d..837d429b42 100644 --- a/flink-autoscaler/src/main/java/org/apache/flink/autoscaler/utils/AutoScalerUtils.java +++ b/flink-autoscaler/src/main/java/org/apache/flink/autoscaler/utils/AutoScalerUtils.java @@ -17,6 +17,7 @@ package org.apache.flink.autoscaler.utils; +import org.apache.flink.autoscaler.ScalingSummary; import org.apache.flink.autoscaler.config.AutoScalerOptions; import org.apache.flink.autoscaler.metrics.EvaluatedScalingMetric; import org.apache.flink.autoscaler.metrics.ScalingMetric; @@ -24,15 +25,19 @@ import org.apache.flink.runtime.jobgraph.JobVertexID; import java.time.Duration; +import java.time.Instant; import java.util.ArrayList; import java.util.Collection; import java.util.HashSet; import java.util.List; import java.util.Map; +import java.util.NavigableMap; import java.util.Set; +import java.util.SortedMap; import static org.apache.flink.autoscaler.metrics.ScalingMetric.CATCH_UP_DATA_RATE; import static org.apache.flink.autoscaler.metrics.ScalingMetric.TARGET_DATA_RATE; +import static org.apache.flink.autoscaler.metrics.ScalingMetric.TRUE_PROCESSING_RATE; /** AutoScaler utilities. */ public class AutoScalerUtils { @@ -94,4 +99,89 @@ public static boolean excludeVerticesFromScaling( conf.set(AutoScalerOptions.VERTEX_EXCLUDE_IDS, new ArrayList<>(excludedIds)); return anyAdded; } + + /** + * Computes the optimized linear scaling coefficient (α) by minimizing the least squares error. + * + *

This method estimates the scaling coefficient in a linear scaling model by fitting + * observed processing rates and parallelism levels. + * + *

The computed coefficient is clamped within the specified lower and upper bounds to ensure + * stability and prevent extreme scaling adjustments. + * + * @param parallelismLevels List of parallelism levels. + * @param processingRates List of observed processing rates. + * @param baselineProcessingRate Baseline processing rate. + * @param upperBound Maximum allowable value for the scaling coefficient. + * @param lowerBound Minimum allowable value for the scaling coefficient. + * @return The optimized scaling coefficient (α), constrained within {@code [lowerBound, + * upperBound]}. + */ + public static double optimizeLinearScalingCoefficient( + List parallelismLevels, + List processingRates, + double baselineProcessingRate, + double upperBound, + double lowerBound) { + + double sum = 0.0; + double squaredSum = 0.0; + + for (int i = 0; i < parallelismLevels.size(); i++) { + double parallelism = parallelismLevels.get(i); + double processingRate = processingRates.get(i); + + sum += parallelism * processingRate; + squaredSum += parallelism * parallelism; + } + + if (squaredSum == 0.0) { + return 1.0; // Fallback to linear scaling if denominator is zero + } + + double alpha = sum / (squaredSum * baselineProcessingRate); + + return Math.max(lowerBound, Math.min(upperBound, alpha)); + } + + /** + * Computes the baseline processing rate from historical scaling data. + * + *

The baseline processing rate represents the **processing rate per unit of parallelism**. + * It is determined using the smallest observed parallelism in the history. + * + * @param history A {@code SortedMap} where keys are timestamps ({@code Instant}), and values + * are {@code ScalingSummary} objects. + * @return The computed baseline processing rate (processing rate per unit of parallelism). + */ + public static double computeBaselineProcessingRate(SortedMap history) { + ScalingSummary latestSmallestParallelismSummary = null; + + for (Map.Entry entry : + ((NavigableMap) history).descendingMap().entrySet()) { + ScalingSummary summary = entry.getValue(); + double parallelism = summary.getCurrentParallelism(); + + if (parallelism == 1) { + return summary.getMetrics().get(TRUE_PROCESSING_RATE).getAverage(); + } + + if (latestSmallestParallelismSummary == null + || parallelism < latestSmallestParallelismSummary.getCurrentParallelism()) { + latestSmallestParallelismSummary = entry.getValue(); + } + } + + if (latestSmallestParallelismSummary == null) { + return Double.NaN; + } + + double parallelism = latestSmallestParallelismSummary.getCurrentParallelism(); + double processingRate = + latestSmallestParallelismSummary + .getMetrics() + .get(TRUE_PROCESSING_RATE) + .getAverage(); + return processingRate / parallelism; + } } diff --git a/flink-autoscaler/src/test/java/org/apache/flink/autoscaler/JobVertexScalerTest.java b/flink-autoscaler/src/test/java/org/apache/flink/autoscaler/JobVertexScalerTest.java index 9cdc71596b..3d085e1718 100644 --- a/flink-autoscaler/src/test/java/org/apache/flink/autoscaler/JobVertexScalerTest.java +++ b/flink-autoscaler/src/test/java/org/apache/flink/autoscaler/JobVertexScalerTest.java @@ -49,6 +49,8 @@ import static org.apache.flink.autoscaler.JobVertexScaler.INEFFECTIVE_SCALING; import static org.apache.flink.autoscaler.JobVertexScaler.SCALE_LIMITED_MESSAGE_FORMAT; import static org.apache.flink.autoscaler.JobVertexScaler.SCALING_LIMITED; +import static org.apache.flink.autoscaler.config.AutoScalerOptions.OBSERVED_SCALABILITY_ENABLED; +import static org.apache.flink.autoscaler.config.AutoScalerOptions.OBSERVED_SCALABILITY_MIN_OBSERVATIONS; import static org.apache.flink.autoscaler.config.AutoScalerOptions.UTILIZATION_TARGET; import static org.assertj.core.api.Assertions.assertThat; import static org.assertj.core.api.Assertions.assertThatExceptionOfType; @@ -1156,4 +1158,213 @@ private Map evaluated( ScalingMetricEvaluator.computeProcessingRateThresholds(metrics, conf, false, restartTime); return metrics; } + + @Test + public void testCalculateScalingCoefficient() { + var currentTime = Instant.now(); + + var linearScalingHistory = new TreeMap(); + var linearScalingEvaluatedData1 = evaluated(4, 100, 200); + var linearScalingEvaluatedData2 = evaluated(2, 400, 100); + var linearScalingEvaluatedData3 = evaluated(8, 800, 400); + + linearScalingHistory.put( + currentTime.minusSeconds(20), + new ScalingSummary(4, 2, linearScalingEvaluatedData1)); + linearScalingHistory.put( + currentTime.minusSeconds(10), + new ScalingSummary(2, 8, linearScalingEvaluatedData2)); + linearScalingHistory.put( + currentTime, new ScalingSummary(8, 16, linearScalingEvaluatedData3)); + + double linearScalingScalingCoefficient = + JobVertexScaler.calculateObservedScalingCoefficient(linearScalingHistory, conf); + + assertEquals(1.0, linearScalingScalingCoefficient); + + var slightDiminishingReturnsScalingHistory = new TreeMap(); + var slightDiminishingReturnsEvaluatedData1 = evaluated(4, 98, 196); + var slightDiminishingReturnsEvaluatedData2 = evaluated(2, 396, 99); + var slightDiminishingReturnsEvaluatedData3 = evaluated(8, 780, 390); + + slightDiminishingReturnsScalingHistory.put( + currentTime.minusSeconds(20), + new ScalingSummary(4, 2, slightDiminishingReturnsEvaluatedData1)); + slightDiminishingReturnsScalingHistory.put( + currentTime.minusSeconds(10), + new ScalingSummary(2, 8, slightDiminishingReturnsEvaluatedData2)); + slightDiminishingReturnsScalingHistory.put( + currentTime, new ScalingSummary(8, 16, slightDiminishingReturnsEvaluatedData3)); + + double slightDiminishingReturnsScalingCoefficient = + JobVertexScaler.calculateObservedScalingCoefficient( + slightDiminishingReturnsScalingHistory, conf); + + assertTrue( + slightDiminishingReturnsScalingCoefficient > 0.9 + && slightDiminishingReturnsScalingCoefficient < 1); + + var sharpDiminishingReturnsScalingHistory = new TreeMap(); + var sharpDiminishingReturnsEvaluatedData1 = evaluated(4, 80, 160); + var sharpDiminishingReturnsEvaluatedData2 = evaluated(2, 384, 96); + var sharpDiminishingReturnsEvaluatedData3 = evaluated(8, 480, 240); + + sharpDiminishingReturnsScalingHistory.put( + currentTime.minusSeconds(20), + new ScalingSummary(4, 2, sharpDiminishingReturnsEvaluatedData1)); + sharpDiminishingReturnsScalingHistory.put( + currentTime.minusSeconds(10), + new ScalingSummary(2, 8, sharpDiminishingReturnsEvaluatedData2)); + sharpDiminishingReturnsScalingHistory.put( + currentTime, new ScalingSummary(8, 16, sharpDiminishingReturnsEvaluatedData3)); + + double sharpDiminishingReturnsScalingCoefficient = + JobVertexScaler.calculateObservedScalingCoefficient( + sharpDiminishingReturnsScalingHistory, conf); + + assertTrue( + sharpDiminishingReturnsScalingCoefficient < 0.9 + && sharpDiminishingReturnsScalingCoefficient > 0.4); + + var sharpDiminishingReturnsWithOneParallelismScalingHistory = + new TreeMap(); + var sharpDiminishingReturnsWithOneParallelismEvaluatedData1 = evaluated(1, 100, 50); + var sharpDiminishingReturnsWithOneParallelismEvaluatedData2 = evaluated(2, 160, 80); + var sharpDiminishingReturnsWithOneParallelismEvaluatedData3 = evaluated(4, 200, 100); + + sharpDiminishingReturnsWithOneParallelismScalingHistory.put( + currentTime.minusSeconds(20), + new ScalingSummary(1, 2, sharpDiminishingReturnsWithOneParallelismEvaluatedData1)); + sharpDiminishingReturnsWithOneParallelismScalingHistory.put( + currentTime.minusSeconds(10), + new ScalingSummary(2, 4, sharpDiminishingReturnsWithOneParallelismEvaluatedData2)); + sharpDiminishingReturnsWithOneParallelismScalingHistory.put( + currentTime, + new ScalingSummary(4, 8, sharpDiminishingReturnsWithOneParallelismEvaluatedData3)); + + double sharpDiminishingReturnsWithOneParallelismScalingCoefficient = + JobVertexScaler.calculateObservedScalingCoefficient( + sharpDiminishingReturnsWithOneParallelismScalingHistory, conf); + + assertTrue( + sharpDiminishingReturnsWithOneParallelismScalingCoefficient < 0.9 + && sharpDiminishingReturnsWithOneParallelismScalingCoefficient > 0.4); + + conf.set(OBSERVED_SCALABILITY_MIN_OBSERVATIONS, 1); + + var withOneScalingHistoryRecord = new TreeMap(); + + var withOneScalingHistoryRecordEvaluatedData1 = evaluated(4, 200, 100); + + withOneScalingHistoryRecord.put( + currentTime, new ScalingSummary(4, 8, withOneScalingHistoryRecordEvaluatedData1)); + + double withOneScalingHistoryRecordScalingCoefficient = + JobVertexScaler.calculateObservedScalingCoefficient( + withOneScalingHistoryRecord, conf); + + assertEquals(1, withOneScalingHistoryRecordScalingCoefficient); + + var diminishingReturnWithTwoScalingHistoryRecord = new TreeMap(); + + var diminishingReturnWithTwoScalingHistoryRecordEvaluatedData1 = evaluated(2, 160, 80); + var diminishingReturnWithTwoScalingHistoryRecordEvaluatedData2 = evaluated(4, 200, 100); + + diminishingReturnWithTwoScalingHistoryRecord.put( + currentTime.minusSeconds(10), + new ScalingSummary( + 2, 4, diminishingReturnWithTwoScalingHistoryRecordEvaluatedData1)); + diminishingReturnWithTwoScalingHistoryRecord.put( + currentTime, + new ScalingSummary( + 4, 8, diminishingReturnWithTwoScalingHistoryRecordEvaluatedData2)); + + double diminishingReturnWithTwoScalingHistoryRecordScalingCoefficient = + JobVertexScaler.calculateObservedScalingCoefficient( + diminishingReturnWithTwoScalingHistoryRecord, conf); + + assertTrue( + diminishingReturnWithTwoScalingHistoryRecordScalingCoefficient < 0.9 + && diminishingReturnWithTwoScalingHistoryRecordScalingCoefficient > 0.4); + + var linearReturnWithTwoScalingHistoryRecord = new TreeMap(); + + var linearReturnWithTwoScalingHistoryRecordEvaluatedData1 = evaluated(2, 160, 80); + var linearReturnWithTwoScalingHistoryRecordEvaluatedData2 = evaluated(4, 320, 160); + + linearReturnWithTwoScalingHistoryRecord.put( + currentTime.minusSeconds(10), + new ScalingSummary(2, 4, linearReturnWithTwoScalingHistoryRecordEvaluatedData1)); + linearReturnWithTwoScalingHistoryRecord.put( + currentTime, + new ScalingSummary(4, 8, linearReturnWithTwoScalingHistoryRecordEvaluatedData2)); + + double linearReturnWithTwoScalingHistoryRecordScalingCoefficient = + JobVertexScaler.calculateObservedScalingCoefficient( + linearReturnWithTwoScalingHistoryRecord, conf); + + assertEquals(1, linearReturnWithTwoScalingHistoryRecordScalingCoefficient); + } + + @ParameterizedTest + @MethodSource("adjustmentInputsProvider") + public void testParallelismScalingWithObservedScalingCoefficient( + Collection inputShipStrategies) { + var op = new JobVertexID(); + var delayedScaleDown = new DelayedScaleDown(); + var currentTime = Instant.now(); + + conf.set(UTILIZATION_TARGET, 0.5); + conf.set(OBSERVED_SCALABILITY_ENABLED, true); + + var linearScalingHistory = new TreeMap(); + var linearScalingEvaluatedData1 = evaluated(4, 100, 200); + var linearScalingEvaluatedData2 = evaluated(2, 400, 100); + var linearScalingEvaluatedData3 = evaluated(8, 800, 400); + + linearScalingHistory.put( + currentTime.minusSeconds(20), + new ScalingSummary(4, 2, linearScalingEvaluatedData1)); + linearScalingHistory.put( + currentTime.minusSeconds(10), + new ScalingSummary(2, 8, linearScalingEvaluatedData2)); + linearScalingHistory.put( + currentTime, new ScalingSummary(8, 16, linearScalingEvaluatedData3)); + + assertEquals( + ParallelismChange.build(10, true), + vertexScaler.computeScaleTargetParallelism( + context, + op, + inputShipStrategies, + evaluated(2, 100, 40), + linearScalingHistory, + restartTime, + delayedScaleDown)); + + var diminishingReturnsScalingHistory = new TreeMap(); + var diminishingReturnsEvaluatedData1 = evaluated(4, 80, 160); + var diminishingReturnsEvaluatedData2 = evaluated(2, 384, 96); + var diminishingReturnsEvaluatedData3 = evaluated(8, 480, 240); + + diminishingReturnsScalingHistory.put( + currentTime.minusSeconds(20), + new ScalingSummary(4, 2, diminishingReturnsEvaluatedData1)); + diminishingReturnsScalingHistory.put( + currentTime.minusSeconds(10), + new ScalingSummary(2, 8, diminishingReturnsEvaluatedData2)); + diminishingReturnsScalingHistory.put( + currentTime, new ScalingSummary(8, 16, diminishingReturnsEvaluatedData3)); + + assertEquals( + ParallelismChange.build(15, true), + vertexScaler.computeScaleTargetParallelism( + context, + op, + inputShipStrategies, + evaluated(2, 100, 40), + diminishingReturnsScalingHistory, + restartTime, + delayedScaleDown)); + } } diff --git a/flink-kubernetes-operator/src/main/java/org/apache/flink/kubernetes/operator/validation/DefaultValidator.java b/flink-kubernetes-operator/src/main/java/org/apache/flink/kubernetes/operator/validation/DefaultValidator.java index e2b5db8564..42fd56e76c 100644 --- a/flink-kubernetes-operator/src/main/java/org/apache/flink/kubernetes/operator/validation/DefaultValidator.java +++ b/flink-kubernetes-operator/src/main/java/org/apache/flink/kubernetes/operator/validation/DefaultValidator.java @@ -65,6 +65,7 @@ import java.util.regex.Matcher; import java.util.regex.Pattern; +import static org.apache.flink.autoscaler.config.AutoScalerOptions.OBSERVED_SCALABILITY_COEFFICIENT_MIN; import static org.apache.flink.autoscaler.config.AutoScalerOptions.UTILIZATION_MAX; import static org.apache.flink.autoscaler.config.AutoScalerOptions.UTILIZATION_MIN; import static org.apache.flink.autoscaler.config.AutoScalerOptions.UTILIZATION_TARGET; @@ -622,6 +623,7 @@ public static Optional validateAutoScalerFlinkConfiguration( UTILIZATION_MIN, 0.0d, flinkConfiguration.get(UTILIZATION_TARGET)), + validateNumber(flinkConfiguration, OBSERVED_SCALABILITY_COEFFICIENT_MIN, 0.01d, 1d), CalendarUtils.validateExcludedPeriods(flinkConfiguration)); } diff --git a/flink-kubernetes-operator/src/test/java/org/apache/flink/kubernetes/operator/validation/DefaultValidatorTest.java b/flink-kubernetes-operator/src/test/java/org/apache/flink/kubernetes/operator/validation/DefaultValidatorTest.java index 8caa24eb28..08388b79ea 100644 --- a/flink-kubernetes-operator/src/test/java/org/apache/flink/kubernetes/operator/validation/DefaultValidatorTest.java +++ b/flink-kubernetes-operator/src/test/java/org/apache/flink/kubernetes/operator/validation/DefaultValidatorTest.java @@ -842,6 +842,21 @@ public void testAutoScalerDeploymentWithInvalidExcludedPeriods() { assertTrue(result.isPresent()); } + @Test + public void testAutoScalerDeploymentWithInvalidScalingCoefficientMin() { + var result = + testAutoScalerConfiguration( + flinkConf -> + flinkConf.put( + AutoScalerOptions.OBSERVED_SCALABILITY_COEFFICIENT_MIN + .key(), + "1.2")); + assertErrorContains( + result, + getFormattedErrorMessage( + AutoScalerOptions.OBSERVED_SCALABILITY_COEFFICIENT_MIN, 0.01d, 1d)); + } + @Test public void testNonEnabledAutoScalerDeploymentJob() { var result =