@@ -250,15 +250,15 @@ Accuracy results on the whole validation dataset (782 batches) are shown below.
250250
251251| Optimization method | Top 1 accuracy | Top 5 accuracy | Top 1 relative accuracy loss [%] | Top 5 relative accuracy loss [%] | Cost = one-time optimization on 9 batches [s] | Validation time [s] | Speedup |
252252|----------------------|-------:|-------:|------:|------:|-------:|--------:|------:|
253- | fp32 no optimization 0.7699 | 0.9340 | 0.00 | 0.00 | 0.00 | 316.50 | 1.0 |
254- | fp32 fused 0.7699 | 0.9340 | 0.00 | 0.00 | 0.03 | 147.77 | 2.1 |
255- | int8 full naive 0.2207 | 0.3912 | 71.33 | 58.12 | 11.29 | 45.81 | **6.9** |
256- | int8 full entropy 0.6933 | 0.8917 | 9.95 | 4.53 | 80.23 | 46.39 | 6.8 |
257- | int8 smart naive 0.2210 | 0.3905 | 71.29 | 58.19 | 11.15 | 46.02 | 6.9 |
258- | int8 smart entropy 0.6928 | 0.8910 | 10.01 | 4.60 | 79.75 | 45.98 | 6.9 |
259- | int8 INC basic 0.7692 | 0.9331 | **0.09** | 0.10 | 266.50 | 48.32 | **6.6** |
260- | int8 INC mse 0.7692 | 0.9337 | **0.09** | 0.03 | 106.50 | 49.76 | **6.4** |
261- | int8 INC mycustom 0.7699 | 0.9338 | **0.00** | 0.02 | 370.29 | 70.07 | **4.5** |
253+ | fp32 no optimization | 0.7699 | 0.9340 | 0.00 | 0.00 | 0.00 | 316.50 | 1.0 |
254+ | fp32 fused | 0.7699 | 0.9340 | 0.00 | 0.00 | 0.03 | 147.77 | 2.1 |
255+ | int8 full naive | 0.2207 | 0.3912 | 71.33 | 58.12 | 11.29 | 45.81 | **6.9** |
256+ | int8 full entropy | 0.6933 | 0.8917 | 9.95 | 4.53 | 80.23 | 46.39 | 6.8 |
257+ | int8 smart naive | 0.2210 | 0.3905 | 71.29 | 58.19 | 11.15 | 46.02 | 6.9 |
258+ | int8 smart entropy | 0.6928 | 0.8910 | 10.01 | 4.60 | 79.75 | 45.98 | 6.9 |
259+ | int8 INC basic | 0.7692 | 0.9331 | **0.09** | 0.10 | 266.50 | 48.32 | **6.6** |
260+ | int8 INC mse | 0.7692 | 0.9337 | **0.09** | 0.03 | 106.50 | 49.76 | **6.4** |
261+ | int8 INC mycustom | 0.7699 | 0.9338 | **0.00** | 0.02 | 370.29 | 70.07 | **4.5** |
262262
263263
264264Environment :
@@ -293,4 +293,4 @@ script:
293293 from neural_compressor.utils.utility import recover
294294
295295 quantized_model = recover(f32_model, 'nc_workspace/<tuning date>/history.snapshot', configuration_idx).model
296- ` ` `
296+ ` ` `
0 commit comments