|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "id": "1932983e-1cd2-41d0-a5eb-0537b3ac3feb", |
| 6 | + "metadata": {}, |
| 7 | + "source": [ |
| 8 | + "# SedonaDB Guide\n", |
| 9 | + "\n", |
| 10 | + "This page explains how to process vector data with SedonaDB.\n", |
| 11 | + "\n", |
| 12 | + "You will learn how to create SedonaDB DataFrames, run spatial queries, and perform I/O operations with various types of files.\n", |
| 13 | + "\n", |
| 14 | + "Let’s start by establishing a SedonaDB connection.\n", |
| 15 | + "\n", |
| 16 | + "## Establish SedonaDB connection\n", |
| 17 | + "\n", |
| 18 | + "Here’s how to create the SedonaDB connection:" |
| 19 | + ] |
| 20 | + }, |
| 21 | + { |
| 22 | + "cell_type": "code", |
| 23 | + "execution_count": 2, |
| 24 | + "id": "53c3b7a8-c42a-407a-a454-6ee1e943fbcc", |
| 25 | + "metadata": {}, |
| 26 | + "outputs": [], |
| 27 | + "source": [ |
| 28 | + "import sedonadb\n", |
| 29 | + "\n", |
| 30 | + "sd = sedonadb.connect()" |
| 31 | + ] |
| 32 | + }, |
| 33 | + { |
| 34 | + "cell_type": "markdown", |
| 35 | + "id": "7aeaa60f-2325-418c-8e72-4344bd4a75fe", |
| 36 | + "metadata": {}, |
| 37 | + "source": [ |
| 38 | + "Now let’s see how to create SedonaDB DataFrames.\n", |
| 39 | + "\n", |
| 40 | + "## Create SedonaDB DataFrame\n", |
| 41 | + "\n", |
| 42 | + "**Manually creating SedonaDB DataFrame**\n", |
| 43 | + "\n", |
| 44 | + "Here’s how to manually create a SedonaDB DataFrame:" |
| 45 | + ] |
| 46 | + }, |
| 47 | + { |
| 48 | + "cell_type": "code", |
| 49 | + "execution_count": 3, |
| 50 | + "id": "b3377767-d747-407c-92c0-8786c1998131", |
| 51 | + "metadata": {}, |
| 52 | + "outputs": [], |
| 53 | + "source": [ |
| 54 | + "df = sd.sql(\"\"\"\n", |
| 55 | + "SELECT * FROM (VALUES\n", |
| 56 | + " ('one', ST_GeomFromWkt('POINT(1 2)')),\n", |
| 57 | + " ('two', ST_GeomFromWkt('POLYGON((-74.0 40.7, -74.0 40.8, -73.9 40.8, -73.9 40.7, -74.0 40.7))')),\n", |
| 58 | + " ('three', ST_GeomFromWkt('LINESTRING(-74.0060 40.7128, -73.9352 40.7306, -73.8561 40.8484)')))\n", |
| 59 | + "AS t(val, point)\"\"\")" |
| 60 | + ] |
| 61 | + }, |
| 62 | + { |
| 63 | + "cell_type": "markdown", |
| 64 | + "id": "0f9e1319-2e7a-4d98-9df0-47a9a73cfff3", |
| 65 | + "metadata": {}, |
| 66 | + "source": [ |
| 67 | + "Check the type of the DataFrame." |
| 68 | + ] |
| 69 | + }, |
| 70 | + { |
| 71 | + "cell_type": "code", |
| 72 | + "execution_count": 4, |
| 73 | + "id": "e8be30ab-4818-4db8-bae2-83e973ad1b77", |
| 74 | + "metadata": {}, |
| 75 | + "outputs": [ |
| 76 | + { |
| 77 | + "data": { |
| 78 | + "text/plain": [ |
| 79 | + "sedonadb.dataframe.DataFrame" |
| 80 | + ] |
| 81 | + }, |
| 82 | + "execution_count": 4, |
| 83 | + "metadata": {}, |
| 84 | + "output_type": "execute_result" |
| 85 | + } |
| 86 | + ], |
| 87 | + "source": [ |
| 88 | + "type(df)" |
| 89 | + ] |
| 90 | + }, |
| 91 | + { |
| 92 | + "cell_type": "markdown", |
| 93 | + "id": "8225ed1f-45a4-4915-a582-8ae191ec53ed", |
| 94 | + "metadata": {}, |
| 95 | + "source": [ |
| 96 | + "**Create SedonaDB DataFrame from files in S3**\n", |
| 97 | + "\n", |
| 98 | + "For most production applications, you will create SedonaDB DataFrames by reading data from a file. Let’s see how to read GeoParquet files in AWS S3 into a SedonaDB DataFrame." |
| 99 | + ] |
| 100 | + }, |
| 101 | + { |
| 102 | + "cell_type": "code", |
| 103 | + "execution_count": 5, |
| 104 | + "id": "151df287-4b2d-433e-9769-c3378df03b1b", |
| 105 | + "metadata": {}, |
| 106 | + "outputs": [], |
| 107 | + "source": [ |
| 108 | + "sd.read_parquet(\n", |
| 109 | + " \"s3://overturemaps-us-west-2/release/2025-08-20.0/theme=divisions/type=division_area/\",\n", |
| 110 | + " options={\"aws.skip_signature\": True, \"aws.region\": \"us-west-2\"},\n", |
| 111 | + ").to_view(\"division_area\")" |
| 112 | + ] |
| 113 | + }, |
| 114 | + { |
| 115 | + "cell_type": "markdown", |
| 116 | + "id": "858fcc66-816d-4c71-8875-82b74169eccd", |
| 117 | + "metadata": {}, |
| 118 | + "source": [ |
| 119 | + "Let’s now run some spatial queries.\n", |
| 120 | + "\n", |
| 121 | + "**Read from GeoPandas DataFrame**\n", |
| 122 | + "\n", |
| 123 | + "This section shows how to convert a GeoPandas DataFrame into a SedonaDB DataFrame.\n", |
| 124 | + "\n", |
| 125 | + "Start by reading a FlatGeoBuf file into a GeoPandas DataFrame:" |
| 126 | + ] |
| 127 | + }, |
| 128 | + { |
| 129 | + "cell_type": "code", |
| 130 | + "execution_count": 12, |
| 131 | + "id": "b81549f2-0f58-49e4-9011-8de6578c2b0e", |
| 132 | + "metadata": {}, |
| 133 | + "outputs": [], |
| 134 | + "source": [ |
| 135 | + "import geopandas as gpd\n", |
| 136 | + "\n", |
| 137 | + "path = \"https://raw.githubusercontent.com/geoarrow/geoarrow-data/v0.2.0/natural-earth/files/natural-earth_cities.fgb\"\n", |
| 138 | + "gdf = gpd.read_file(path)" |
| 139 | + ] |
| 140 | + }, |
| 141 | + { |
| 142 | + "cell_type": "markdown", |
| 143 | + "id": "2265f94b-ccb3-4634-8c52-a8799c68c76a", |
| 144 | + "metadata": {}, |
| 145 | + "source": [ |
| 146 | + "Now convert the GeoPandas DataFrame to a SedonaDB DataFrame and view three rows of content:" |
| 147 | + ] |
| 148 | + }, |
| 149 | + { |
| 150 | + "cell_type": "code", |
| 151 | + "execution_count": 7, |
| 152 | + "id": "0e4819db-bf58-42d7-8b5b-f272d0f19266", |
| 153 | + "metadata": {}, |
| 154 | + "outputs": [ |
| 155 | + { |
| 156 | + "name": "stdout", |
| 157 | + "output_type": "stream", |
| 158 | + "text": [ |
| 159 | + "┌──────────────┬──────────────────────────────┐\n", |
| 160 | + "│ name ┆ geometry │\n", |
| 161 | + "│ utf8 ┆ geometry │\n", |
| 162 | + "╞══════════════╪══════════════════════════════╡\n", |
| 163 | + "│ Vatican City ┆ POINT(12.4533865 41.9032822) │\n", |
| 164 | + "├╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┤\n", |
| 165 | + "│ San Marino ┆ POINT(12.4417702 43.9360958) │\n", |
| 166 | + "├╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┤\n", |
| 167 | + "│ Vaduz ┆ POINT(9.5166695 47.1337238) │\n", |
| 168 | + "└──────────────┴──────────────────────────────┘\n" |
| 169 | + ] |
| 170 | + } |
| 171 | + ], |
| 172 | + "source": [ |
| 173 | + "df = sd.create_data_frame(gdf)\n", |
| 174 | + "df.show(3)" |
| 175 | + ] |
| 176 | + }, |
| 177 | + { |
| 178 | + "cell_type": "markdown", |
| 179 | + "id": "6890bcc3-f3bd-4c47-bf86-2607bed5e480", |
| 180 | + "metadata": {}, |
| 181 | + "source": [ |
| 182 | + "## Spatial queries\n", |
| 183 | + "\n", |
| 184 | + "Let’s see how to run spatial operations like filtering, joins, and clustering algorithms.\n", |
| 185 | + "\n", |
| 186 | + "***Spatial filtering***\n", |
| 187 | + "\n", |
| 188 | + "Let’s run a spatial filtering operation to fetch all the objects in the following polygon:" |
| 189 | + ] |
| 190 | + }, |
| 191 | + { |
| 192 | + "cell_type": "code", |
| 193 | + "execution_count": 8, |
| 194 | + "id": "8c8a4b48-8c4e-412e-900f-8c0f6f4ccc1d", |
| 195 | + "metadata": {}, |
| 196 | + "outputs": [ |
| 197 | + { |
| 198 | + "name": "stdout", |
| 199 | + "output_type": "stream", |
| 200 | + "text": [ |
| 201 | + "┌──────────┬──────────┬────────────────────────────────────────────────────────────────────────────┐\n", |
| 202 | + "│ country ┆ region ┆ geometry │\n", |
| 203 | + "│ utf8view ┆ utf8view ┆ geometry │\n", |
| 204 | + "╞══════════╪══════════╪════════════════════════════════════════════════════════════════════════════╡\n", |
| 205 | + "│ CA ┆ CA-NS ┆ POLYGON((-66.0528452 43.4531336,-66.0883401 43.3978188,-65.9647654 43.361… │\n", |
| 206 | + "├╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┤\n", |
| 207 | + "│ CA ┆ CA-NS ┆ POLYGON((-66.0222822 43.5166842,-66.0252286 43.5100071,-66.0528452 43.453… │\n", |
| 208 | + "├╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┤\n", |
| 209 | + "│ CA ┆ CA-NS ┆ POLYGON((-65.7451389 43.5336263,-65.7450818 43.5347004,-65.7449545 43.535… │\n", |
| 210 | + "└──────────┴──────────┴────────────────────────────────────────────────────────────────────────────┘\n" |
| 211 | + ] |
| 212 | + } |
| 213 | + ], |
| 214 | + "source": [ |
| 215 | + "nova_scotia_bbox_wkt = (\n", |
| 216 | + " \"POLYGON((-66.5 43.4, -66.5 47.1, -59.8 47.1, -59.8 43.4, -66.5 43.4))\"\n", |
| 217 | + ")\n", |
| 218 | + "\n", |
| 219 | + "ns = sd.sql(f\"\"\"\n", |
| 220 | + "SELECT country, region, geometry\n", |
| 221 | + "FROM division_area\n", |
| 222 | + "WHERE ST_Intersects(geometry, ST_SetSRID(ST_GeomFromText('{nova_scotia_bbox_wkt}'), 4326))\n", |
| 223 | + "\"\"\")\n", |
| 224 | + "\n", |
| 225 | + "ns.show(3)" |
| 226 | + ] |
| 227 | + }, |
| 228 | + { |
| 229 | + "cell_type": "markdown", |
| 230 | + "id": "32076e01-d807-40ed-8457-9d8c4244e89f", |
| 231 | + "metadata": {}, |
| 232 | + "source": [ |
| 233 | + "You can see it only includes the divisions in the Nova Scotia area. Skip to the visualization section to see how this data can be graphed on a map.\n", |
| 234 | + "\n", |
| 235 | + "***K-nearest neighbors (KNN) joins***\n", |
| 236 | + "\n", |
| 237 | + "Create `restaurants` and `customers` tables so we can demonstrate the KNN join functionality." |
| 238 | + ] |
| 239 | + }, |
| 240 | + { |
| 241 | + "cell_type": "code", |
| 242 | + "execution_count": 9, |
| 243 | + "id": "deaa36db-2fee-4ba2-ab79-1dc756cb1655", |
| 244 | + "metadata": {}, |
| 245 | + "outputs": [], |
| 246 | + "source": [ |
| 247 | + "df = sd.sql(\"\"\"\n", |
| 248 | + "SELECT name, ST_Point(lng, lat) AS location\n", |
| 249 | + "FROM (VALUES \n", |
| 250 | + " (101, -74.0, 40.7, 'Pizza Palace'),\n", |
| 251 | + " (102, -73.99, 40.69, 'Burger Barn'),\n", |
| 252 | + " (103, -74.02, 40.72, 'Taco Town'),\n", |
| 253 | + " (104, -73.98, 40.75, 'Sushi Spot'),\n", |
| 254 | + " (105, -74.05, 40.68, 'Deli Direct')\n", |
| 255 | + ") AS t(id, lng, lat, name)\n", |
| 256 | + "\"\"\")\n", |
| 257 | + "sd.sql(\"drop view if exists restaurants\")\n", |
| 258 | + "df.to_view(\"restaurants\")\n", |
| 259 | + "\n", |
| 260 | + "df = sd.sql(\"\"\"\n", |
| 261 | + "SELECT name, ST_Point(lng, lat) AS location\n", |
| 262 | + "FROM (VALUES \n", |
| 263 | + " (1, -74.0, 40.7, 'Alice'),\n", |
| 264 | + " (2, -73.9, 40.8, 'Bob'),\n", |
| 265 | + " (3, -74.1, 40.6, 'Carol')\n", |
| 266 | + ") AS t(id, lng, lat, name)\n", |
| 267 | + "\"\"\")\n", |
| 268 | + "sd.sql(\"drop view if exists customers\")\n", |
| 269 | + "df.to_view(\"customers\")" |
| 270 | + ] |
| 271 | + }, |
| 272 | + { |
| 273 | + "cell_type": "code", |
| 274 | + "execution_count": 10, |
| 275 | + "id": "e3bc4976-4245-432f-b265-7f6aa13f35b9", |
| 276 | + "metadata": {}, |
| 277 | + "outputs": [ |
| 278 | + { |
| 279 | + "name": "stdout", |
| 280 | + "output_type": "stream", |
| 281 | + "text": [ |
| 282 | + "┌───────┬───────────────────┐\n", |
| 283 | + "│ name ┆ location │\n", |
| 284 | + "│ utf8 ┆ geometry │\n", |
| 285 | + "╞═══════╪═══════════════════╡\n", |
| 286 | + "│ Alice ┆ POINT(-74 40.7) │\n", |
| 287 | + "├╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┤\n", |
| 288 | + "│ Bob ┆ POINT(-73.9 40.8) │\n", |
| 289 | + "├╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┤\n", |
| 290 | + "│ Carol ┆ POINT(-74.1 40.6) │\n", |
| 291 | + "└───────┴───────────────────┘\n" |
| 292 | + ] |
| 293 | + } |
| 294 | + ], |
| 295 | + "source": [ |
| 296 | + "df.show()" |
| 297 | + ] |
| 298 | + }, |
| 299 | + { |
| 300 | + "cell_type": "markdown", |
| 301 | + "id": "9df227d6-0972-457a-87e3-5a89802c460f", |
| 302 | + "metadata": {}, |
| 303 | + "source": [ |
| 304 | + "Perform a KNN join to identify the two restaurants that are nearest to each customer:" |
| 305 | + ] |
| 306 | + }, |
| 307 | + { |
| 308 | + "cell_type": "code", |
| 309 | + "execution_count": 11, |
| 310 | + "id": "05565e15-ee18-431c-8fd2-673291d8d0ee", |
| 311 | + "metadata": {}, |
| 312 | + "outputs": [ |
| 313 | + { |
| 314 | + "name": "stdout", |
| 315 | + "output_type": "stream", |
| 316 | + "text": [ |
| 317 | + "┌──────────┬──────────────┐\n", |
| 318 | + "│ customer ┆ restaurant │\n", |
| 319 | + "│ utf8 ┆ utf8 │\n", |
| 320 | + "╞══════════╪══════════════╡\n", |
| 321 | + "│ Alice ┆ Burger Barn │\n", |
| 322 | + "├╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌┤\n", |
| 323 | + "│ Alice ┆ Pizza Palace │\n", |
| 324 | + "├╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌┤\n", |
| 325 | + "│ Bob ┆ Pizza Palace │\n", |
| 326 | + "├╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌┤\n", |
| 327 | + "│ Bob ┆ Sushi Spot │\n", |
| 328 | + "├╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌┤\n", |
| 329 | + "│ Carol ┆ Deli Direct │\n", |
| 330 | + "├╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌┤\n", |
| 331 | + "│ Carol ┆ Pizza Palace │\n", |
| 332 | + "└──────────┴──────────────┘\n" |
| 333 | + ] |
| 334 | + } |
| 335 | + ], |
| 336 | + "source": [ |
| 337 | + "sd.sql(\"\"\"\n", |
| 338 | + "SELECT\n", |
| 339 | + " c.name AS customer,\n", |
| 340 | + " r.name AS restaurant\n", |
| 341 | + "FROM customers c, restaurants r\n", |
| 342 | + "WHERE ST_KNN(c.location, r.location, 2, false)\n", |
| 343 | + "ORDER BY c.name, r.name;\n", |
| 344 | + "\"\"\").show()" |
| 345 | + ] |
| 346 | + }, |
| 347 | + { |
| 348 | + "cell_type": "markdown", |
| 349 | + "id": "2e93fe6a-b0a7-4ec0-952c-dde9edcacdc4", |
| 350 | + "metadata": {}, |
| 351 | + "source": [ |
| 352 | + "Notice how each customer has two rows - one for each of the two closest restaurants.\n", |
| 353 | + "\n", |
| 354 | + "## Files\n", |
| 355 | + "\n", |
| 356 | + "You can read GeoParquet files with SedonaDB, see the following example:\n", |
| 357 | + "\n", |
| 358 | + "```python\n", |
| 359 | + "df = sd.read_parquet(\"some_file.parquet\")\n", |
| 360 | + "```\n", |
| 361 | + "\n", |
| 362 | + "Once you read the file, you can easily expose it as a view and query it with spatial SQL, as we demonstrated in the example above." |
| 363 | + ] |
| 364 | + } |
| 365 | + ], |
| 366 | + "metadata": { |
| 367 | + "kernelspec": { |
| 368 | + "display_name": "Python 3 (ipykernel)", |
| 369 | + "language": "python", |
| 370 | + "name": "python3" |
| 371 | + }, |
| 372 | + "language_info": { |
| 373 | + "codemirror_mode": { |
| 374 | + "name": "ipython", |
| 375 | + "version": 3 |
| 376 | + }, |
| 377 | + "file_extension": ".py", |
| 378 | + "mimetype": "text/x-python", |
| 379 | + "name": "python", |
| 380 | + "nbconvert_exporter": "python", |
| 381 | + "pygments_lexer": "ipython3", |
| 382 | + "version": "3.12.4" |
| 383 | + } |
| 384 | + }, |
| 385 | + "nbformat": 4, |
| 386 | + "nbformat_minor": 5 |
| 387 | +} |
0 commit comments