diff --git a/examples/singa_peft/examples/autograd/resnet_cifar10.py b/examples/singa_peft/examples/autograd/resnet_cifar10.py new file mode 100644 index 000000000..b0ec62183 --- /dev/null +++ b/examples/singa_peft/examples/autograd/resnet_cifar10.py @@ -0,0 +1,153 @@ +# +# Licensed to the Apache Software Foundation (ASF) under one +# or more contributor license agreements. See the NOTICE file +# distributed with this work for additional information +# regarding copyright ownership. The ASF licenses this file +# to you under the Apache License, Version 2.0 (the +# "License"); you may not use this file except in compliance +# with the License. You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, +# software distributed under the License is distributed on an +# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY +# KIND, either express or implied. See the License for the +# specific language governing permissions and limitations +# under the License. +# + +try: + import pickle +except ImportError: + import cPickle as pickle + +from singa import singa_wrap as singa +from singa import autograd +from singa import tensor +from singa import device +from singa import opt +from PIL import Image +import numpy as np +import os +import sys +import time + + +def load_dataset(filepath): + with open(filepath, 'rb') as fd: + try: + cifar10 = pickle.load(fd, encoding='latin1') + except TypeError: + cifar10 = pickle.load(fd) + image = cifar10['data'].astype(dtype=np.uint8) + image = image.reshape((-1, 3, 32, 32)) + label = np.asarray(cifar10['labels'], dtype=np.uint8) + label = label.reshape(label.size, 1) + return image, label + + +def load_train_data(dir_path='cifar-10-batches-py', num_batches=5): + labels = [] + batchsize = 10000 + images = np.empty((num_batches * batchsize, 3, 32, 32), dtype=np.uint8) + for did in range(1, num_batches + 1): + fname_train_data = dir_path + "/data_batch_{}".format(did) + image, label = load_dataset(check_dataset_exist(fname_train_data)) + images[(did - 1) * batchsize:did * batchsize] = image + labels.extend(label) + images = np.array(images, dtype=np.float32) + labels = np.array(labels, dtype=np.int32) + return images, labels + + +def load_test_data(dir_path='cifar-10-batches-py'): + images, labels = load_dataset(check_dataset_exist(dir_path + "/test_batch")) + return np.array(images, dtype=np.float32), np.array(labels, dtype=np.int32) + + +def check_dataset_exist(dirpath): + if not os.path.exists(dirpath): + print( + 'Please download the cifar10 dataset using download_data.py (e.g. python ~/singa/examples/cifar10/download_data.py py)' + ) + sys.exit(0) + return dirpath + + +def normalize_for_resnet(train_x, test_x): + mean = [0.4914, 0.4822, 0.4465] + std = [0.2023, 0.1994, 0.2010] + train_x /= 255 + test_x /= 255 + for ch in range(0, 2): + train_x[:, ch, :, :] -= mean[ch] + train_x[:, ch, :, :] /= std[ch] + test_x[:, ch, :, :] -= mean[ch] + test_x[:, ch, :, :] /= std[ch] + return train_x, test_x + + +def resize_dataset(x, IMG_SIZE): + num_data = x.shape[0] + dim = x.shape[1] + X = np.zeros(shape=(num_data, dim, IMG_SIZE, IMG_SIZE), dtype=np.float32) + for n in range(0, num_data): + for d in range(0, dim): + X[n, d, :, :] = np.array(Image.fromarray(x[n, d, :, :]).resize( + (IMG_SIZE, IMG_SIZE), Image.BILINEAR), + dtype=np.float32) + return X + + +def augmentation(x, batch_size): + xpad = np.pad(x, [[0, 0], [0, 0], [4, 4], [4, 4]], 'symmetric') + for data_num in range(0, batch_size): + offset = np.random.randint(8, size=2) + x[data_num, :, :, :] = xpad[data_num, :, offset[0]:offset[0] + 32, + offset[1]:offset[1] + 32] + if_flip = np.random.randint(2) + if (if_flip): + x[data_num, :, :, :] = x[data_num, :, :, ::-1] + return x + + +def accuracy(pred, target): + y = np.argmax(pred, axis=1) + t = np.argmax(target, axis=1) + a = y == t + return np.array(a, "int").sum() + + +def to_categorical(y, num_classes): + y = np.array(y, dtype="int") + n = y.shape[0] + categorical = np.zeros((n, num_classes)) + for i in range(0, n): + categorical[i, y[i]] = 1 + categorical = categorical.astype(np.float32) + return categorical + + +# Function to all reduce NUMPY accuracy and loss from multiple devices +def reduce_variable(variable, dist_opt, reducer): + reducer.copy_from_numpy(variable) + dist_opt.all_reduce(reducer.data) + dist_opt.wait() + output = tensor.to_numpy(reducer) + return output + + +# Function to synchronize SINGA TENSOR initial model parameters +def synchronize(tensor, dist_opt): + dist_opt.all_reduce(tensor.data) + dist_opt.wait() + tensor /= dist_opt.world_size + + +# Data partition +def data_partition(dataset_x, dataset_y, global_rank, world_size): + data_per_rank = dataset_x.shape[0] // world_size + idx_start = global_rank * data_per_rank + idx_end = (global_rank + 1) * data_per_rank + return dataset_x[idx_start:idx_end], dataset_y[idx_start:idx_end]