You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
[SPARK-22395][SQL][PYTHON] Fix the behavior of timestamp values for Pandas to respect session timezone
## What changes were proposed in this pull request?
When converting Pandas DataFrame/Series from/to Spark DataFrame using `toPandas()` or pandas udfs, timestamp values behave to respect Python system timezone instead of session timezone.
For example, let's say we use `"America/Los_Angeles"` as session timezone and have a timestamp value `"1970-01-01 00:00:01"` in the timezone. Btw, I'm in Japan so Python timezone would be `"Asia/Tokyo"`.
The timestamp value from current `toPandas()` will be the following:
```
>>> spark.conf.set("spark.sql.session.timeZone", "America/Los_Angeles")
>>> df = spark.createDataFrame([28801], "long").selectExpr("timestamp(value) as ts")
>>> df.show()
+-------------------+
| ts|
+-------------------+
|1970-01-01 00:00:01|
+-------------------+
>>> df.toPandas()
ts
0 1970-01-01 17:00:01
```
As you can see, the value becomes `"1970-01-01 17:00:01"` because it respects Python timezone.
As we discussed in #18664, we consider this behavior is a bug and the value should be `"1970-01-01 00:00:01"`.
## How was this patch tested?
Added tests and existing tests.
Author: Takuya UESHIN <[email protected]>
Closes#19607 from ueshin/issues/SPARK-22395.
Copy file name to clipboardExpand all lines: docs/sql-programming-guide.md
+2Lines changed: 2 additions & 0 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -1716,6 +1716,8 @@ options.
1716
1716
</table>
1717
1717
1718
1718
Note that, for <b>DecimalType(38,0)*</b>, the table above intentionally does not cover all other combinations of scales and precisions because currently we only infer decimal type like `BigInteger`/`BigInt`. For example, 1.1 is inferred as double type.
1719
+
- In PySpark, now we need Pandas 0.19.2 or upper if you want to use Pandas related functionalities, such as `toPandas`, `createDataFrame` from Pandas DataFrame, etc.
1720
+
- In PySpark, the behavior of timestamp values for Pandas related functionalities was changed to respect session timezone. If you want to use the old behavior, you need to set a configuration `spark.sql.execution.pandas.respectSessionTimeZone` to `False`. See [SPARK-22395](https://issues.apache.org/jira/browse/SPARK-22395) for details.
0 commit comments