Skip to content

Commit 8059a78

Browse files
committed
doctest
1 parent a3598a1 commit 8059a78

File tree

1 file changed

+21
-21
lines changed

1 file changed

+21
-21
lines changed

python/pyspark/mllib/random.py

Lines changed: 21 additions & 21 deletions
Original file line numberDiff line numberDiff line change
@@ -134,9 +134,9 @@ def normalRDD(
134134
>>> stats = x.stats()
135135
>>> stats.count()
136136
1000
137-
>>> abs(stats.mean() - 0.0) < 0.1
137+
>>> bool(abs(stats.mean() - 0.0) < 0.1)
138138
True
139-
>>> abs(stats.stdev() - 1.0) < 0.1
139+
>>> bool(abs(stats.stdev() - 1.0) < 0.1)
140140
True
141141
"""
142142
return callMLlibFunc("normalRDD", sc._jsc, size, numPartitions, seed)
@@ -186,10 +186,10 @@ def logNormalRDD(
186186
>>> stats = x.stats()
187187
>>> stats.count()
188188
1000
189-
>>> abs(stats.mean() - expMean) < 0.5
189+
>>> bool(abs(stats.mean() - expMean) < 0.5)
190190
True
191191
>>> from math import sqrt
192-
>>> abs(stats.stdev() - expStd) < 0.5
192+
>>> bool(abs(stats.stdev() - expStd) < 0.5)
193193
True
194194
"""
195195
return callMLlibFunc(
@@ -238,7 +238,7 @@ def poissonRDD(
238238
>>> abs(stats.mean() - mean) < 0.5
239239
True
240240
>>> from math import sqrt
241-
>>> abs(stats.stdev() - sqrt(mean)) < 0.5
241+
>>> bool(abs(stats.stdev() - sqrt(mean)) < 0.5)
242242
True
243243
"""
244244
return callMLlibFunc("poissonRDD", sc._jsc, float(mean), size, numPartitions, seed)
@@ -285,7 +285,7 @@ def exponentialRDD(
285285
>>> abs(stats.mean() - mean) < 0.5
286286
True
287287
>>> from math import sqrt
288-
>>> abs(stats.stdev() - sqrt(mean)) < 0.5
288+
>>> bool(abs(stats.stdev() - sqrt(mean)) < 0.5)
289289
True
290290
"""
291291
return callMLlibFunc("exponentialRDD", sc._jsc, float(mean), size, numPartitions, seed)
@@ -336,9 +336,9 @@ def gammaRDD(
336336
>>> stats = x.stats()
337337
>>> stats.count()
338338
1000
339-
>>> abs(stats.mean() - expMean) < 0.5
339+
>>> bool(abs(stats.mean() - expMean) < 0.5)
340340
True
341-
>>> abs(stats.stdev() - expStd) < 0.5
341+
>>> bool(abs(stats.stdev() - expStd) < 0.5)
342342
True
343343
"""
344344
return callMLlibFunc(
@@ -384,7 +384,7 @@ def uniformVectorRDD(
384384
>>> mat = np.matrix(RandomRDDs.uniformVectorRDD(sc, 10, 10).collect())
385385
>>> mat.shape
386386
(10, 10)
387-
>>> mat.max() <= 1.0 and mat.min() >= 0.0
387+
>>> bool(mat.max() <= 1.0 and mat.min() >= 0.0)
388388
True
389389
>>> RandomRDDs.uniformVectorRDD(sc, 10, 10, 4).getNumPartitions()
390390
4
@@ -430,9 +430,9 @@ def normalVectorRDD(
430430
>>> mat = np.matrix(RandomRDDs.normalVectorRDD(sc, 100, 100, seed=1).collect())
431431
>>> mat.shape
432432
(100, 100)
433-
>>> abs(mat.mean() - 0.0) < 0.1
433+
>>> bool(abs(mat.mean() - 0.0) < 0.1)
434434
True
435-
>>> abs(mat.std() - 1.0) < 0.1
435+
>>> bool(abs(mat.std() - 1.0) < 0.1)
436436
True
437437
"""
438438
return callMLlibFunc("normalVectorRDD", sc._jsc, numRows, numCols, numPartitions, seed)
@@ -488,9 +488,9 @@ def logNormalVectorRDD(
488488
>>> mat = np.matrix(m)
489489
>>> mat.shape
490490
(100, 100)
491-
>>> abs(mat.mean() - expMean) < 0.1
491+
>>> bool(abs(mat.mean() - expMean) < 0.1)
492492
True
493-
>>> abs(mat.std() - expStd) < 0.1
493+
>>> bool(abs(mat.std() - expStd) < 0.1)
494494
True
495495
"""
496496
return callMLlibFunc(
@@ -545,13 +545,13 @@ def poissonVectorRDD(
545545
>>> import numpy as np
546546
>>> mean = 100.0
547547
>>> rdd = RandomRDDs.poissonVectorRDD(sc, mean, 100, 100, seed=1)
548-
>>> mat = np.mat(rdd.collect())
548+
>>> mat = np.asmatrix(rdd.collect())
549549
>>> mat.shape
550550
(100, 100)
551-
>>> abs(mat.mean() - mean) < 0.5
551+
>>> bool(abs(mat.mean() - mean) < 0.5)
552552
True
553553
>>> from math import sqrt
554-
>>> abs(mat.std() - sqrt(mean)) < 0.5
554+
>>> bool(abs(mat.std() - sqrt(mean)) < 0.5)
555555
True
556556
"""
557557
return callMLlibFunc(
@@ -599,13 +599,13 @@ def exponentialVectorRDD(
599599
>>> import numpy as np
600600
>>> mean = 0.5
601601
>>> rdd = RandomRDDs.exponentialVectorRDD(sc, mean, 100, 100, seed=1)
602-
>>> mat = np.mat(rdd.collect())
602+
>>> mat = np.asmatrix(rdd.collect())
603603
>>> mat.shape
604604
(100, 100)
605-
>>> abs(mat.mean() - mean) < 0.5
605+
>>> bool(abs(mat.mean() - mean) < 0.5)
606606
True
607607
>>> from math import sqrt
608-
>>> abs(mat.std() - sqrt(mean)) < 0.5
608+
>>> bool(abs(mat.std() - sqrt(mean)) < 0.5)
609609
True
610610
"""
611611
return callMLlibFunc(
@@ -662,9 +662,9 @@ def gammaVectorRDD(
662662
>>> mat = np.matrix(RandomRDDs.gammaVectorRDD(sc, shape, scale, 100, 100, seed=1).collect())
663663
>>> mat.shape
664664
(100, 100)
665-
>>> abs(mat.mean() - expMean) < 0.1
665+
>>> bool(abs(mat.mean() - expMean) < 0.1)
666666
True
667-
>>> abs(mat.std() - expStd) < 0.1
667+
>>> bool(abs(mat.std() - expStd) < 0.1)
668668
True
669669
"""
670670
return callMLlibFunc(

0 commit comments

Comments
 (0)