Skip to content

Commit 2cd9efd

Browse files
committed
[DOCS] Add Algorithms reference from previous docs
closes #1068
1 parent 0d1d011 commit 2cd9efd

13 files changed

+4143
-7
lines changed

docs/README.md

Lines changed: 1 addition & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -28,12 +28,11 @@ The Documentation is separated into different parts by sub folders.
2828
.
2929
├── _layouts
3030
│ ├── global.html # The Default content layout and html file.
31+
│ ├── site.html # The Default content layout for docs pages contained in site folder
3132
├── _site # If run locally a _site folder is generated containing the compiled site.
3233
├── _config.yml # The configuration for jekyll to construct the site.
3334
├── Gemfile.yml # The dependency list for the documentation
3435
├── index.md # The main entry File
35-
├── _layouts
36-
│ ├── global.html
3736
├── css # The style files folder
3837
├── img # The Images folder
3938
├── js # The JavaScript folder
25.9 KB
Loading
14.4 KB
Loading

docs/index.md

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -31,16 +31,16 @@ SystemDS's distinguishing characteristics are:
3131
This version of SystemDS supports: Java 8+, Python 3.5+, Hadoop 2.6+ (Not 3.X), and Spark 2.1+ (Not 3.X) Nvidia CUDA 10.2
3232
(CuDNN 7.x) Intel MKL (<=2019.x).
3333

34-
# Links
34+
## Links
3535

3636
Various forms of documentation for SystemDS are available.
3737

38-
- a [DML language reference](./site/dml-language-reference) for an list of operations possible inside SystemDS.
39-
- [builtin functions](./site/builtins-reference) contains a collection of builtin functions providing an high level abstraction on complex machine learning algorithms.
38+
- a [DML Language Reference](./site/dml-language-reference) for an list of operations possible inside SystemDS.
39+
- [Builtin Functions](./site/builtins-reference) contains a collection of builtin functions providing an high level abstraction on complex machine learning algorithms.
40+
- [Algorithm Reference](./site/algorithms-reference) contains specifics on algorithms supported in systemds.
4041
- [Entity Resolution](./site/entity-resolution) provides a collection of customizable entity resolution primitives and pipelines.
4142
- [Run SystemDS](./site/run) contains an Helloworld example along with an environment setup guide.
4243
- Instructions on python can be found at [Python Documentation](./api/python/index)
43-
- The [javadoc API](./api/java/index) contains internal documentation of the system source code.
44+
- The [JavaDOC](./api/java/index) contains internal documentation of the system source code.
4445
- [Install from Source](./site/install) guides through setup from git download to running system.
4546
- If you want to contribute take a look at [Contributing](https://github.com/apache/systemds/blob/master/CONTRIBUTING.md)
46-
Lines changed: 122 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,122 @@
1+
---
2+
layout: site
3+
title: Algorithms Reference Bibliography
4+
---
5+
<!--
6+
{% comment %}
7+
Licensed to the Apache Software Foundation (ASF) under one or more
8+
contributor license agreements. See the NOTICE file distributed with
9+
this work for additional information regarding copyright ownership.
10+
The ASF licenses this file to you under the Apache License, Version 2.0
11+
(the "License"); you may not use this file except in compliance with
12+
the License. You may obtain a copy of the License at
13+
14+
http://www.apache.org/licenses/LICENSE-2.0
15+
16+
Unless required by applicable law or agreed to in writing, software
17+
distributed under the License is distributed on an "AS IS" BASIS,
18+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
19+
See the License for the specific language governing permissions and
20+
limitations under the License.
21+
{% endcomment %}
22+
-->
23+
24+
**[AcockStavig1979]** Alan C. Acock and Gordon
25+
R. Stavig, A Measure of Association for Nonparametric
26+
Statistics, Social Forces, Oxford University
27+
Press, Volume 57, Number 4, June, 1979,
28+
1381--1386.
29+
30+
**[AgrawalKSX2002]** Rakesh Agrawal and
31+
Jerry Kiernan and Ramakrishnan Srikant and Yirong Xu,
32+
Hippocratic Databases, Proceedings of the 28-th
33+
International Conference on Very Large Data Bases (VLDB 2002),
34+
Hong Kong, China, August 20--23, 2002,
35+
143--154.
36+
37+
**[Agresti2002]** Alan Agresti, Categorical
38+
Data Analysis, Second Edition, Wiley Series in
39+
Probability and Statistics, Wiley-Interscience
40+
2002, 710.
41+
42+
**[AloiseDHP2009]** Daniel Aloise and Amit
43+
Deshpande and Pierre Hansen and Preyas Popat, NP-hardness of
44+
Euclidean Sum-of-squares Clustering, Machine Learning,
45+
Kluwer Academic Publishers, Volume 75, Number 2,
46+
May, 2009, 245--248.
47+
48+
**[ArthurVassilvitskii2007]**
49+
k-means++: The Advantages of Careful Seeding, David
50+
Arthur and Sergei Vassilvitskii, Proceedings of the 18th
51+
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2007),
52+
January 7--9, 2007, New Orleans, LA,
53+
USA, 1027--1035.
54+
55+
**[Breiman2001]** L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.
56+
57+
**[BreimanFOS1984]** L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and Regression Trees. Wadsworth, 1984.
58+
59+
**[Chapelle2007]** Olivier Chapelle, Training a Support Vector Machine in the Primal, Neural Computation, 2007.
60+
61+
**[Cochran1954]** William G. Cochran,
62+
Some Methods for Strengthening the Common $\chi^2$ Tests,
63+
Biometrics, Volume 10, Number 4, December
64+
1954, 417--451.
65+
66+
**[Collett2003]** D. Collett. Modelling Survival Data in Medical Research, Second Edition. Chapman & Hall/CRC Texts in Statistical Science. Taylor & Francis, 2003.
67+
68+
**[Gill2000]** Jeff Gill, Generalized Linear
69+
Models: A Unified Approach, Sage University Papers Series on
70+
Quantitative Applications in the Social Sciences, Number 07-134,
71+
2000, Sage Publications, 101.
72+
73+
**[Hartigan1975]** John A. Hartigan,
74+
Clustering Algorithms, John Wiley~&~Sons Inc.,
75+
Probability and Mathematical Statistics, April
76+
1975, 365.
77+
78+
**[Hsieh2008]** C-J Hsieh, K-W Chang, C-J Lin, S. S. Keerthi and S. Sundararajan, A Dual Coordinate Descent Method for Large-scale Linear SVM, International Conference of Machine Learning (ICML), 2008.
79+
80+
**[Lin2008]** Chih-Jen Lin and Ruby C. Weng and
81+
S. Sathiya Keerthi, Trust Region Newton Method for
82+
Large-Scale Logistic Regression, Journal of Machine Learning
83+
Research, April, 2008, Volume 9, 627--650.
84+
85+
**[McCallum1998]** A. McCallum and K. Nigam, A comparison of event models for naive bayes text classification, AAAI-98 workshop on learning for text categorization, 1998.
86+
87+
**[McCullagh1989]** Peter McCullagh and John Ashworth
88+
Nelder, Generalized Linear Models, Second Edition,
89+
Monographs on Statistics and Applied Probability, Number 37,
90+
1989, Chapman & Hall/CRC, 532.
91+
92+
**[Nelder1972]** John Ashworth Nelder and Robert
93+
William Maclagan Wedderburn, Generalized Linear Models,
94+
Journal of the Royal Statistical Society, Series A
95+
(General), 1972, Volume 135, Number 3,
96+
370--384.
97+
98+
**[Nocedal1999]** J. Nocedal and S. J. Wright, Numerical Optimization, Springer-Verlag, 1999.
99+
100+
**[Nocedal2006]** Optimization Numerical Optimization,
101+
Jorge Nocedal and Stephen Wright, Springer Series
102+
in Operations Research and Financial Engineering, 664,
103+
Second Edition, Springer, 2006.
104+
105+
**[PandaHBB2009]** B. Panda, J. Herbach, S. Basu, and R. J. Bayardo. PLANET: massively parallel learning of tree ensembles with mapreduce. PVLDB, 2(2):1426– 1437, 2009.
106+
107+
**[Russell2009]** S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, Prentice Hall, 2009.
108+
109+
**[Scholkopf1995]** B. Scholkopf, C. Burges and V. Vapnik, Extracting Support Data for a Given Task, International Conference on Knowledge Discovery and Data Mining (ICDM), 1995.
110+
111+
**[Stevens1946]** Stanley Smith Stevens,
112+
On the Theory of Scales of Measurement, Science
113+
June 7, 1946, Volume 103, Number 2684,
114+
677--680.
115+
116+
**[Vetterling1992]**
117+
W. T. Vetterling and B. P. Flannery,
118+
Multidimensions in Numerical Recipes in C - The Art in Scientific Computing, W. H. Press and S. A. Teukolsky (eds.), Cambridge University Press, 1992.
119+
120+
**[ZhouWSP08]**
121+
Y. Zhou, D. M. Wilkinson, R. Schreiber, and R. Pan. Large-scale parallel collaborative filtering for the Netflix prize.
122+
In Algorithmic Aspects in Information and Management, 4th International Conference, AAIM 2008, Shanghai, China, June 23-25, 2008. Proceedings, pages 337–348, 2008.

0 commit comments

Comments
 (0)