-
Notifications
You must be signed in to change notification settings - Fork 3.8k
Description
Expected behavior
The ConvTranspose operator in TVM should produce right shape.
Actual behavior
For the following model,
it can be executed by onnxruntime and onnx's ReferenceEvaluator, the shapes of results are as follows:
onnxruntime: (1, 6, 56, 56)
ReferenceEvaluator: (1, 6, 56, 56)
However, the shape of results produced by TVM is:
TVM: (1, 6, 55, 55)
which is different from those of onnxruntime and onnx's ReferenceEvaluator.
According to the documents of ConvTranspose, the shape of the output is calculated via the following equation:
output_shape[i] = stride[i] * (input_size[i] - 1) + output_padding[i] + ((kernel_shape[i] - 1) * dilations[i] + 1) - pads[start_i] - pads[end_i]
For the last dim, the shape should be:
2*(28-1) + 1 + ((3-1) + 1) - 1 - 1 = 54 + 1 + 3 - 1 - 1 = 56
This is confusing that why the shape of TVM's results is (1, 6, 55, 55).
Environment
OS: Ubuntu 20.04
TVM: 0.23.dev0 (f4e28d3)
onnxruntime: 1.23.2
Steps to reproduce
This bug can be reproduced by the following code with the model in the attachment.
from typing import Dict, List, Literal, Optional
import sys
import os
import numpy as np
import onnx
from onnx.reference import ReferenceEvaluator
import onnxruntime
from onnx import ModelProto, TensorProto, helper
import tvm
import tvm.testing
from tvm import relax
from tvm.relax.frontend.onnx import from_onnx
import argparse
import pickle
def test() -> None:
onnx_model = onnx.load("11.onnx")
# Configure model format.
onnx_model.ir_version = 8
onnx_model.opset_import[0].version = 14
with open("inputs.pkl", 'rb') as fp:
inputs = pickle.load(fp)
# Run the model through onnx to get the expected result.
try:
ort_session = onnxruntime.InferenceSession(
onnx_model.SerializeToString(), providers=["CPUExecutionProvider"]
)
ort_output = ort_session.run([], inputs)
except Exception as e:
print(e)
print("This model cannot be executed by onnxruntime!")
sys.exit(1)
print("onnxruntime:", ort_output[0].shape)
# ReferenceEvaluator
sess = ReferenceEvaluator("11.onnx")
re_output = sess.run(None, inputs)
print("ReferenceEvaluator:", re_output[0].shape)
tvm.testing.assert_allclose(re_output[0], ort_output[0], rtol=0.1, atol=0.1)
# TVM
# Convert the onnx model into relax through the onnx importer.
tvm_model = from_onnx(onnx_model, opset=14, keep_params_in_input=True)
# Convert operators for inference mode.
tvm_model = relax.transform.DecomposeOpsForInference()(tvm_model)
# Legalize any relax ops into tensorir.
tvm_model = relax.transform.LegalizeOps()(tvm_model)
# Separate model from parameters.
tvm_model, params = relax.frontend.detach_params(tvm_model)
# Compile the relax graph into a VM then run.
with tvm.transform.PassContext(opt_level=3):
ex = tvm.compile(tvm_model, target="llvm")
vm = relax.VirtualMachine(ex, tvm.cpu())
# Prepare inputs.
input_list = [
inputs[key.name_hint] for key in tvm_model["main"].params if key.name_hint in inputs
]
if params:
input_list += params["main"]
# Run model and check outputs.
vm.set_input("main", *input_list)
vm.invoke_stateful("main")
tvm_output = vm.get_outputs("main")
print("TVM:", tvm_output.shape)
if __name__ == "__main__":
test()
Triage
Please refer to the list of label tags here to find the relevant tags and add them below in a bullet format (example below).
- needs-triage