|
| 1 | +--- |
| 2 | +title: Make - LLMs Actor integration |
| 3 | +description: Learn about LLM browser modules. Search the web and extract clean Markdown for AI assistants and RAG. |
| 4 | +sidebar_label: LLMs |
| 5 | +sidebar_position: 7 |
| 6 | +slug: /integrations/make/llm |
| 7 | +toc_max_heading_level: 4 |
| 8 | +--- |
| 9 | + |
| 10 | +## Apify Scraper for LLMs |
| 11 | + |
| 12 | +Apify Scraper for LLMs from [Apify](https://apify.com) is a web browsing module for OpenAI Assistants, RAG pipelines, and AI agents. It can query Google Search, scrape the top results, and return page content as Markdown for downstream AI processing. |
| 13 | + |
| 14 | +To use these modules, you need an [Apify account](https://console.apify.com) and an [API token](https://docs.apify.com/platform/integrations/api#api-token). You can find your token in the Apify Console under **Settings > Integrations**. After connecting, you can automate content extraction and integrate results into your AI workflows. |
| 15 | + |
| 16 | +## Connect Apify Scraper for LLMs |
| 17 | + |
| 18 | +1. Create an account at [Apify](https://console.apify.com/). You can sign up using your email, Gmail, or GitHub account. |
| 19 | + |
| 20 | + <!-- TODO: Add signup screenshot. Suggested path: images/llm/signup.png --> |
| 21 | + |
| 22 | +1. To connect your Apify account to Make, you can use an OAuth connection (recommended) or an Apify API token. To get the token, go to **[Settings > API & Integrations](https://console.apify.com/settings/integrations)** in the Apify Console. |
| 23 | + |
| 24 | + <!-- TODO: Add console token screenshot. You can reuse: images/Apify_Console_token_for_Make.png --> |
| 25 | + |
| 26 | +1. Find your token under **Personal API tokens**. You can also create a new token with custom permissions by clicking **+ Create a new token**. |
| 27 | +1. Click the **Copy** icon to copy your API token, then return to your Make scenario. |
| 28 | + |
| 29 | + <!-- TODO: Add Make token connection screenshot. You can reuse: images/Apify_token_on_Make.png --> |
| 30 | + |
| 31 | +1. In Make, click **Add** to open the **Create a connection** dialog of the chosen Apify Scraper module. |
| 32 | +1. In the **API token** field, paste your token, provide a clear **Connection name**, and click **Save**. |
| 33 | + |
| 34 | + <!-- TODO: Add Make connection dialog screenshot. Suggested path: images/llm/make-connection.png --> |
| 35 | + |
| 36 | +Once connected, you can build workflows that search the web, extract content, and pass it to your AI applications. |
| 37 | + |
| 38 | +## Apify Scraper for LLMs modules |
| 39 | + |
| 40 | +After connecting the app, you can use two modules to search and extract content. |
| 41 | + |
| 42 | +### Standard Settings module |
| 43 | + |
| 44 | +Use Standard Settings to quickly search the web and extract content with optimized defaults. This is ideal for AI agents that need to answer questions or gather information from multiple sources. |
| 45 | + |
| 46 | +The module supports two modes: |
| 47 | + |
| 48 | +- **Search mode** (keywords) |
| 49 | + - Queries Google Search with your keywords (supports advanced operators) |
| 50 | + - Retrieves the top N organic results |
| 51 | + - Loads each result and extracts the main content |
| 52 | + - Returns Markdown-formatted content |
| 53 | + |
| 54 | +- **Direct URL mode** (URL) |
| 55 | + - Navigates to a specific URL |
| 56 | + - Extracts page content |
| 57 | + - Skips Google Search |
| 58 | + |
| 59 | +#### Processing steps |
| 60 | + |
| 61 | +1. Search (if keywords provided): run Google Search, parse results, collect organic URLs |
| 62 | +2. Content extraction: load pages, wait for dynamic content, remove clutter, extract main content, convert to Markdown |
| 63 | +3. Output generation: combine content, add metadata and sources, format for AI consumption |
| 64 | + |
| 65 | +#### Output data |
| 66 | + |
| 67 | +```json title="Standard Settings output (shortened)" |
| 68 | +{ |
| 69 | + "query": "web browser for RAG pipelines -site:reddit.com", |
| 70 | + "crawl": { |
| 71 | + "httpStatusCode": 200, |
| 72 | + "httpStatusMessage": "OK", |
| 73 | + "loadedAt": "2025-06-30T10:15:23.456Z", |
| 74 | + "uniqueKey": "https://example.com/article", |
| 75 | + "requestStatus": "handled" |
| 76 | + }, |
| 77 | + "searchResult": { |
| 78 | + "title": "Building RAG Pipelines with Web Browsers", |
| 79 | + "description": "Integrate web browsing into your RAG pipeline for real-time retrieval.", |
| 80 | + "url": "https://example.com/article", |
| 81 | + "resultType": "organic", |
| 82 | + "rank": 1 |
| 83 | + }, |
| 84 | + "metadata": { |
| 85 | + "title": "Building RAG Pipelines with Web Browsers", |
| 86 | + "description": "Add web browsing to RAG systems", |
| 87 | + "languageCode": "en", |
| 88 | + "url": "https://example.com/article" |
| 89 | + }, |
| 90 | + "markdown": "# Building RAG Pipelines with Web Browsers\n\n..." |
| 91 | +} |
| 92 | +``` |
| 93 | + |
| 94 | +#### Configuration (Standard Settings) |
| 95 | + |
| 96 | +- **Search query**: Google Search keywords or a direct URL |
| 97 | +- **Maximum results**: Number of top search results to process (default: 3) |
| 98 | +- **Output formats**: Markdown, text, or HTML |
| 99 | +- **Remove cookie warnings**: Dismiss cookie consent dialogs |
| 100 | +- **Debug mode**: Enable extraction diagnostics |
| 101 | + |
| 102 | +### Advanced Settings module |
| 103 | + |
| 104 | +Advanced Settings gives you full control over search and extraction. Use it for complex sites or production RAG pipelines. |
| 105 | + |
| 106 | +#### Key features |
| 107 | + |
| 108 | +- Advanced search options: full Google operator support |
| 109 | +- Flexible crawling tools: browser-based (Playwright) or HTTP-based (Cheerio) |
| 110 | +- Proxy configuration: handle geo-restrictions and rate limits |
| 111 | +- Granular content control: include, remove, and click selectors |
| 112 | +- Dynamic content handling: wait strategies for JavaScript rendering |
| 113 | +- Multiple output formats: Markdown, HTML, or text |
| 114 | +- Request management: timeouts, retries, and concurrency |
| 115 | + |
| 116 | +#### Configuration options |
| 117 | + |
| 118 | +- Search: query, max results (1–100), SERP proxy group, SERP retries |
| 119 | +- Scraping: tool (browser-playwright, raw-http), HTML transformer, selectors (remove/keep/click), expand clickable elements |
| 120 | +- Requests: timeouts, retries, dynamic content wait |
| 121 | +- Proxy: use Apify Proxy, proxy groups, countries |
| 122 | +- Output: formats, save HTML/Markdown, debug mode, save screenshots |
| 123 | + |
| 124 | +#### Output data |
| 125 | + |
| 126 | +```json title="Advanced Settings output (shortened)" |
| 127 | +{ |
| 128 | + "query": "advanced RAG implementation strategies", |
| 129 | + "crawl": { |
| 130 | + "httpStatusCode": 200, |
| 131 | + "httpStatusMessage": "OK", |
| 132 | + "loadedUrl": "https://ai-research.com/rag-strategies", |
| 133 | + "loadedTime": "2025-06-30T10:45:12.789Z", |
| 134 | + "referrerUrl": "https://www.google.com/search?q=advanced+RAG+implementation+strategies", |
| 135 | + "uniqueKey": "https://ai-research.com/rag-strategies", |
| 136 | + "requestStatus": "handled", |
| 137 | + "depth": 0 |
| 138 | + }, |
| 139 | + "searchResult": { |
| 140 | + "title": "Advanced RAG Implementation: A Complete Guide", |
| 141 | + "description": "Cutting-edge strategies for RAG systems.", |
| 142 | + "url": "https://ai-research.com/rag-strategies", |
| 143 | + "resultType": "organic", |
| 144 | + "rank": 1 |
| 145 | + }, |
| 146 | + "metadata": { |
| 147 | + "canonicalUrl": "https://ai-research.com/rag-strategies", |
| 148 | + "title": "Advanced RAG Implementation: A Complete Guide | AI Research", |
| 149 | + "description": "Vector DBs, chunking, and optimization techniques.", |
| 150 | + "languageCode": "en" |
| 151 | + }, |
| 152 | + "markdown": "# Advanced RAG Implementation: A Complete Guide\n\n...", |
| 153 | + "debug": { |
| 154 | + "extractorUsed": "readableText", |
| 155 | + "elementsRemoved": 47, |
| 156 | + "elementsClicked": 3 |
| 157 | + } |
| 158 | +} |
| 159 | +``` |
| 160 | + |
| 161 | +### Use cases |
| 162 | + |
| 163 | +- Quick information retrieval for AI assistants |
| 164 | +- General web search integration and Q&A |
| 165 | +- Production RAG pipelines that need reliability |
| 166 | +- Extracting content from JavaScript-heavy sites |
| 167 | +- Building specialized knowledge bases and research workflows |
| 168 | + |
| 169 | +### Best practices |
| 170 | + |
| 171 | +1. Search query optimization: use specific keywords and operators; exclude unwanted domains with `-site:` |
| 172 | +2. Performance: use HTTP mode for static sites; use browser mode only when necessary; tune concurrency |
| 173 | +3. Content quality: remove non-content elements; select the right HTML transformer; enable debug when needed |
| 174 | +4. Error handling: set timeouts and retries; monitor HTTP status codes |
| 175 | + |
| 176 | +## Other scrapers available |
| 177 | + |
| 178 | +There are other native Make Apps powered by Apify. You can check out Apify Scraper for: |
| 179 | + |
| 180 | +- [Instagram Data](/platform/integrations/make/instagram) |
| 181 | +- [TikTok Data](/platform/integrations/make/tiktok) |
| 182 | +- [Google Search](/platform/integrations/make/search) |
| 183 | +- [Google Maps Emails Data](/platform/integrations/make/maps) |
| 184 | +- [YouTube Data](/platform/integrations/make/youtube) |
| 185 | +- [AI crawling](/platform/integrations/make/ai-crawling) |
| 186 | +- [Amazon](/platform/integrations/make/amazon) |
| 187 | + |
| 188 | +And more! Because you can access any of our 4,500+ scrapers on Apify Store by using the [general Apify connections](https://www.make.com/en/integrations/apify). |
0 commit comments