diff --git a/sources/platform/integrations/ai/openai_assistants.md b/sources/platform/integrations/ai/openai_assistants.md index 229d259fa4..524e634972 100644 --- a/sources/platform/integrations/ai/openai_assistants.md +++ b/sources/platform/integrations/ai/openai_assistants.md @@ -39,15 +39,10 @@ Import all required packages: import json import time -from typing import TYPE_CHECKING from apify_client import ApifyClient from openai import OpenAI, Stream from openai.types.beta.threads.run_submit_tool_outputs_params import ToolOutput - -if TYPE_CHECKING: - from openai.types.beta import AssistantStreamEvent - from openai.types.beta.threads import Run ``` Find your [Apify API token](https://console.apify.com/account/integrations) and [OpenAI API key](https://platform.openai.com/account/api-keys) and initialize OpenAI and Apify clients: @@ -134,7 +129,7 @@ This function will trigger the RAG-Web-Browser to fetch the search data and subm Let's implement the `submit_tool_outputs` function: ```python -def submit_tool_outputs(run_: Run) -> Run | Stream[AssistantStreamEvent]: +def submit_tool_outputs(run_): """ Submit tool outputs to continue the run """ tool_output = [] for tool in run_.required_action.submit_tool_outputs.tool_calls: @@ -178,15 +173,11 @@ The latest news on LLM is as follows: ```python import json -from typing import TYPE_CHECKING from apify_client import ApifyClient from openai import OpenAI, Stream from openai.types.beta.threads.run_submit_tool_outputs_params import ToolOutput -if TYPE_CHECKING: - from openai.types.beta import AssistantStreamEvent - from openai.types.beta.threads import Run client = OpenAI(api_key="YOUR-OPENAI-API-KEY") apify_client = ApifyClient("YOUR-APIFY-API-TOKEN") @@ -215,8 +206,6 @@ rag_web_browser_function = { } } -my_assistant = client.beta.assistants.retrieve("asst_7GXx3q9lWLmhSf9yexA7J1WX") - def call_rag_web_browser(query: str, max_results: int) -> list[dict]: """ @@ -227,7 +216,7 @@ def call_rag_web_browser(query: str, max_results: int) -> list[dict]: return apify_client.dataset(actor_call["defaultDatasetId"]).list_items().items -def submit_tool_outputs(run_: Run) -> Run | Stream[AssistantStreamEvent]: +def submit_tool_outputs(run_): """ Submit tool outputs to continue the run """ tool_output = [] for tool in run_.required_action.submit_tool_outputs.tool_calls: