|
2 | 2 | //
|
3 | 3 | // This source file is part of the Swift Numerics open source project
|
4 | 4 | //
|
5 |
| -// Copyright (c) 2019 Apple Inc. and the Swift Numerics project authors |
| 5 | +// Copyright (c) 2019-2024 Apple Inc. and the Swift Numerics project authors |
6 | 6 | // Licensed under Apache License v2.0 with Runtime Library Exception
|
7 | 7 | //
|
8 | 8 | // See https://swift.org/LICENSE.txt for license information
|
@@ -83,92 +83,91 @@ final class ArithmeticTests: XCTestCase {
|
83 | 83 | func testPolar<T>(_ type: T.Type)
|
84 | 84 | where T: BinaryFloatingPoint, T: Real,
|
85 | 85 | T.Exponent: FixedWidthInteger, T.RawSignificand: FixedWidthInteger {
|
86 |
| - |
87 |
| - // In order to support round-tripping from rectangular to polar coordinate |
88 |
| - // systems, as a special case phase can be non-finite when length is |
89 |
| - // either zero or infinity. |
90 |
| - XCTAssertEqual(Complex<T>(length: .zero, phase: .infinity), .zero) |
91 |
| - XCTAssertEqual(Complex<T>(length: .zero, phase:-.infinity), .zero) |
92 |
| - XCTAssertEqual(Complex<T>(length: .zero, phase: .nan ), .zero) |
93 |
| - XCTAssertEqual(Complex<T>(length: .infinity, phase: .infinity), .infinity) |
94 |
| - XCTAssertEqual(Complex<T>(length: .infinity, phase:-.infinity), .infinity) |
95 |
| - XCTAssertEqual(Complex<T>(length: .infinity, phase: .nan ), .infinity) |
96 |
| - XCTAssertEqual(Complex<T>(length:-.infinity, phase: .infinity), .infinity) |
97 |
| - XCTAssertEqual(Complex<T>(length:-.infinity, phase:-.infinity), .infinity) |
98 |
| - XCTAssertEqual(Complex<T>(length:-.infinity, phase: .nan ), .infinity) |
99 |
| - |
100 |
| - let exponentRange = |
101 |
| - T.leastNormalMagnitude.exponent ... T.greatestFiniteMagnitude.exponent |
102 |
| - let inputs = (0..<100).map { _ in |
103 |
| - Polar(length: T( |
104 |
| - sign: .plus, |
105 |
| - exponent: T.Exponent.random(in: exponentRange), |
106 |
| - significand: T.random(in: 1 ..< 2) |
107 |
| - ), phase: T.random(in: -.pi ... .pi)) |
108 |
| - } |
109 |
| - for p in inputs { |
110 |
| - // first test that each value can round-trip between rectangular and |
111 |
| - // polar coordinates with reasonable accuracy. We'll probably need to |
112 |
| - // relax this for some platforms (currently we're using the default |
113 |
| - // RNG, which means we don't get the same sequence of values each time; |
114 |
| - // this is good--more test coverage!--and bad, because without tight |
115 |
| - // bounds on every platform's libm, we can't get tight bounds on the |
116 |
| - // accuracy of these operations, so we need to relax them gradually). |
117 |
| - let z = Complex(length: p.length, phase: p.phase) |
118 |
| - if !closeEnough(z.length, p.length, ulps: 16) { |
119 |
| - print("p = \(p)\nz = \(z)\nz.length = \(z.length)") |
120 |
| - XCTFail() |
121 |
| - } |
122 |
| - if !closeEnough(z.phase, p.phase, ulps: 16) { |
123 |
| - print("p = \(p)\nz = \(z)\nz.phase = \(z.phase)") |
124 |
| - XCTFail() |
125 |
| - } |
126 |
| - // Complex(length: -r, phase: θ) = -Complex(length: r, phase: θ). |
127 |
| - let w = Complex(length: -p.length, phase: p.phase) |
128 |
| - if w != -z { |
129 |
| - print("p = \(p)\nw = \(w)\nz = \(z)") |
130 |
| - XCTFail() |
131 |
| - } |
132 |
| - XCTAssertEqual(w, -z) |
133 |
| - // if length*length is normal, it should be lengthSquared, up |
134 |
| - // to small error. |
135 |
| - if (p.length*p.length).isNormal { |
136 |
| - if !closeEnough(z.lengthSquared, p.length*p.length, ulps: 16) { |
137 |
| - print("p = \(p)\nz = \(z)\nz.lengthSquared = \(z.lengthSquared)") |
138 |
| - XCTFail() |
139 |
| - } |
140 |
| - } |
141 |
| - // Test reciprocal and normalized: |
142 |
| - let r = Complex(length: 1/p.length, phase: -p.phase) |
143 |
| - if r.isNormal { |
144 |
| - if relativeError(r, z.reciprocal!) > 16 { |
145 |
| - print("p = \(p)\nz = \(z)\nz.reciprocal = \(r)") |
146 |
| - XCTFail() |
147 |
| - } |
148 |
| - } else { XCTAssertNil(z.reciprocal) } |
149 |
| - let n = Complex(length: 1, phase: p.phase) |
150 |
| - if relativeError(n, z.normalized!) > 16 { |
151 |
| - print("p = \(p)\nz = \(z)\nz.normalized = \(n)") |
152 |
| - XCTFail() |
153 |
| - } |
154 |
| - |
155 |
| - // Now test multiplication and division using the polar inputs: |
156 |
| - for q in inputs { |
157 |
| - let w = Complex(length: q.length, phase: q.phase) |
158 |
| - var product = Complex(length: p.length, phase: p.phase + q.phase) |
159 |
| - product.real *= q.length |
160 |
| - product.imaginary *= q.length |
161 |
| - if checkMultiply(z, w, expected: product, ulps: 16) { XCTFail() } |
162 |
| - var quotient = Complex(length: p.length, phase: p.phase - q.phase) |
163 |
| - quotient.real /= q.length |
164 |
| - quotient.imaginary /= q.length |
165 |
| - if checkDivide(z, w, expected: quotient, ulps: 16) { XCTFail() } |
166 |
| - } |
167 |
| - } |
| 86 | + // In order to support round-tripping from rectangular to polar coordinate |
| 87 | + // systems, as a special case phase can be non-finite when length is |
| 88 | + // either zero or infinity. |
| 89 | + XCTAssertEqual(Complex<T>(length: .zero, phase: .infinity), .zero) |
| 90 | + XCTAssertEqual(Complex<T>(length: .zero, phase:-.infinity), .zero) |
| 91 | + XCTAssertEqual(Complex<T>(length: .zero, phase: .nan ), .zero) |
| 92 | + XCTAssertEqual(Complex<T>(length: .infinity, phase: .infinity), .infinity) |
| 93 | + XCTAssertEqual(Complex<T>(length: .infinity, phase:-.infinity), .infinity) |
| 94 | + XCTAssertEqual(Complex<T>(length: .infinity, phase: .nan ), .infinity) |
| 95 | + XCTAssertEqual(Complex<T>(length:-.infinity, phase: .infinity), .infinity) |
| 96 | + XCTAssertEqual(Complex<T>(length:-.infinity, phase:-.infinity), .infinity) |
| 97 | + XCTAssertEqual(Complex<T>(length:-.infinity, phase: .nan ), .infinity) |
| 98 | + |
| 99 | + let exponentRange = |
| 100 | + T.leastNormalMagnitude.exponent ... T.greatestFiniteMagnitude.exponent |
| 101 | + let inputs = (0..<100).map { _ in |
| 102 | + Polar(length: T( |
| 103 | + sign: .plus, |
| 104 | + exponent: T.Exponent.random(in: exponentRange), |
| 105 | + significand: T.random(in: 1 ..< 2) |
| 106 | + ), phase: T.random(in: -.pi ... .pi)) |
| 107 | + } |
| 108 | + for p in inputs { |
| 109 | + // first test that each value can round-trip between rectangular and |
| 110 | + // polar coordinates with reasonable accuracy. We'll probably need to |
| 111 | + // relax this for some platforms (currently we're using the default |
| 112 | + // RNG, which means we don't get the same sequence of values each time; |
| 113 | + // this is good--more test coverage!--and bad, because without tight |
| 114 | + // bounds on every platform's libm, we can't get tight bounds on the |
| 115 | + // accuracy of these operations, so we need to relax them gradually). |
| 116 | + let z = Complex(length: p.length, phase: p.phase) |
| 117 | + if !closeEnough(z.length, p.length, ulps: 16) { |
| 118 | + print("p = \(p)\nz = \(z)\nz.length = \(z.length)") |
| 119 | + XCTFail() |
| 120 | + } |
| 121 | + if !closeEnough(z.phase, p.phase, ulps: 16) { |
| 122 | + print("p = \(p)\nz = \(z)\nz.phase = \(z.phase)") |
| 123 | + XCTFail() |
| 124 | + } |
| 125 | + // Complex(length: -r, phase: θ) = -Complex(length: r, phase: θ). |
| 126 | + let w = Complex(length: -p.length, phase: p.phase) |
| 127 | + if w != -z { |
| 128 | + print("p = \(p)\nw = \(w)\nz = \(z)") |
| 129 | + XCTFail() |
| 130 | + } |
| 131 | + XCTAssertEqual(w, -z) |
| 132 | + // if length*length is normal, it should be lengthSquared, up |
| 133 | + // to small error. |
| 134 | + if (p.length*p.length).isNormal { |
| 135 | + if !closeEnough(z.lengthSquared, p.length*p.length, ulps: 16) { |
| 136 | + print("p = \(p)\nz = \(z)\nz.lengthSquared = \(z.lengthSquared)") |
| 137 | + XCTFail() |
| 138 | + } |
| 139 | + } |
| 140 | + // Test reciprocal and normalized: |
| 141 | + let r = Complex(length: 1/p.length, phase: -p.phase) |
| 142 | + if r.isNormal { |
| 143 | + if relativeError(r, z.reciprocal!) > 16 { |
| 144 | + print("p = \(p)\nz = \(z)\nz.reciprocal = \(r)") |
| 145 | + XCTFail() |
168 | 146 | }
|
| 147 | + } else { XCTAssertNil(z.reciprocal) } |
| 148 | + let n = Complex(length: 1, phase: p.phase) |
| 149 | + if relativeError(n, z.normalized!) > 16 { |
| 150 | + print("p = \(p)\nz = \(z)\nz.normalized = \(n)") |
| 151 | + XCTFail() |
| 152 | + } |
| 153 | + |
| 154 | + // Now test multiplication and division using the polar inputs: |
| 155 | + for q in inputs { |
| 156 | + let w = Complex(length: q.length, phase: q.phase) |
| 157 | + var product = Complex(length: p.length, phase: p.phase + q.phase) |
| 158 | + product.real *= q.length |
| 159 | + product.imaginary *= q.length |
| 160 | + if checkMultiply(z, w, expected: product, ulps: 16) { XCTFail() } |
| 161 | + var quotient = Complex(length: p.length, phase: p.phase - q.phase) |
| 162 | + quotient.real /= q.length |
| 163 | + quotient.imaginary /= q.length |
| 164 | + if checkDivide(z, w, expected: quotient, ulps: 16) { XCTFail() } |
| 165 | + } |
| 166 | + } |
| 167 | + } |
169 | 168 |
|
170 | 169 | func testPolar() {
|
171 |
| -#if !((os(macOS) || targetEnvironment(macCatalyst)) && arch(x86_64)) |
| 170 | +#if !((os(macOS) || targetEnvironment(macCatalyst)) && arch(x86_64)) && LONG_TESTS |
172 | 171 | if #available(macOS 11.0, iOS 14.0, tvOS 14.0, watchOS 7.0, *) {
|
173 | 172 | testPolar(Float16.self)
|
174 | 173 | }
|
|
0 commit comments