Skip to content

Commit a4dd3b5

Browse files
nerpaulaSimran-B
authored andcommitted
update startup parameters
1 parent 17e9b62 commit a4dd3b5

File tree

3 files changed

+138
-95
lines changed

3 files changed

+138
-95
lines changed

site/content/ai-suite/reference/importer.md

Lines changed: 67 additions & 46 deletions
Original file line numberDiff line numberDiff line change
@@ -98,62 +98,41 @@ To start the service, use the AI service endpoint `/v1/graphragimporter`.
9898
Please refer to the documentation of [AI service](gen-ai.md) for more
9999
information on how to use it.
100100

101-
### Using Triton Inference Server (Private LLM)
102-
103-
The first step is to install the LLM Host service with the LLM and
104-
embedding models of your choice. The setup will the use the
105-
Triton Inference Server and MLflow at the backend.
106-
For more details, please refer to the [Triton Inference Server](triton-inference-server.md)
107-
and [Mlflow](mlflow.md) documentation.
108-
109-
Once the `llmhost` service is up-and-running, then you can start the Importer
110-
service using the below configuration:
111-
112-
```json
113-
{
114-
"env": {
115-
"username": "your_username",
116-
"db_name": "your_database_name",
117-
"api_provider": "triton",
118-
"triton_url": "your-arangodb-llm-host-url",
119-
"triton_model": "mistral-nemo-instruct"
120-
},
121-
}
122-
```
123-
124-
Where:
125-
- `username`: ArangoDB database user with permissions to create and modify collections.
126-
- `db_name`: Name of the ArangoDB database where the knowledge graph will be stored.
127-
- `api_provider`: Specifies which LLM provider to use.
128-
- `triton_url`: URL of your Triton Inference Server instance. This should be the URL where your `llmhost` service is running.
129-
- `triton_model`: Name of the LLM model to use for text processing.
130-
131-
### Using OpenAI (Public LLM)
101+
### Using OpenAI for chat and embedding
132102

133103
```json
134104
{
135105
"env": {
136-
"openai_api_key": "your_openai_api_key",
137106
"username": "your_username",
138107
"db_name": "your_database_name",
139-
"api_provider": "openai"
108+
"chat_api_provider": "openai",
109+
"chat_api_url": "https://api.openai.com/v1",
110+
"embedding_api_url": "https://api.openai.com/v1",
111+
"chat_model": "gpt-4o",
112+
"embedding_model": "text-embedding-3-small",
113+
"chat_api_key": "your_openai_api_key",
114+
"embedding_api_key": "your_openai_api_key"
140115
},
141116
}
142117
```
143118

144119
Where:
145120
- `username`: ArangoDB database user with permissions to create and modify collections
146121
- `db_name`: Name of the ArangoDB database where the knowledge graph will be stored
147-
- `api_provider`: Specifies which LLM provider to use
148-
- `openai_api_key`: Your OpenAI API key
122+
- `chat_api_provider`: API provider for language model services
123+
- `embedding_api_url`: API endpoint URL for the embedding model service
124+
- `chat_model`: Specific language model to use for text generation and analysis
125+
- `embedding_model`: Specific model to use for generating text embeddings
126+
- `chat_api_key`: API key for authenticating with the chat/language model service
127+
- `embedding_api_key`: API key for authenticating with the embedding model service
149128

150129
{{< info >}}
151130
By default, for OpenAI API, the service is using
152131
`gpt-4o-mini` and `text-embedding-3-small` models as LLM and
153132
embedding model respectively.
154133
{{< /info >}}
155134

156-
### Using OpenRouter (Gemini, Anthropic, etc.)
135+
### Using OpenRouter for chat and OpenAI for embedding
157136

158137
OpenRouter makes it possible to connect to a huge array of LLM API
159138
providers, including non-OpenAI LLMs like Gemini Flash, Anthropic Claude
@@ -167,27 +146,69 @@ while OpenAI is used for the embedding model.
167146
"env": {
168147
"db_name": "your_database_name",
169148
"username": "your_username",
170-
"api_provider": "openrouter",
171-
"openai_api_key": "your_openai_api_key",
172-
"openrouter_api_key": "your_openrouter_api_key",
173-
"openrouter_model": "mistralai/mistral-nemo" // Specify a model here
149+
"chat_api_provider": "openai",
150+
"embedding_api_provider": "openai",
151+
"chat_api_url": "https://openrouter.ai/api/v1",
152+
"embedding_api_url": "https://api.openai.com/v1",
153+
"chat_model": "mistral-nemo",
154+
"embedding_model": "text-embedding-3-small",
155+
"chat_api_key": "your_openrouter_api_key",
156+
"embedding_api_key": "your_openai_api_key"
174157
},
175158
}
176159
```
177160

178161
Where:
179-
- `username`: ArangoDB database user with permissions to access collections
180-
- `db_name`: Name of the ArangoDB database where the knowledge graph is stored
181-
- `api_provider`: Specifies which LLM provider to use
182-
- `openai_api_key`: Your OpenAI API key (for the embedding model)
183-
- `openrouter_api_key`: Your OpenRouter API key (for the LLM)
184-
- `openrouter_model`: Desired LLM (optional; default is `mistral-nemo`)
162+
- `username`: ArangoDB database user with permissions to access collections
163+
- `db_name`: Name of the ArangoDB database where the knowledge graph is stored
164+
- `chat_api_provider`: API provider for language model services
165+
- `embedding_api_url`: API endpoint URL for the embedding model service
166+
- `chat_model`: Specific language model to use for text generation and analysis
167+
- `embedding_model`: Specific model to use for generating text embeddings
168+
- `chat_api_key`: API key for authenticating with the chat/language model service
169+
- `embedding_api_key`: API key for authenticating with the embedding model service
185170

186171
{{< info >}}
187172
When using OpenRouter, the service defaults to `mistral-nemo` for generation
188173
(via OpenRouter) and `text-embedding-3-small` for embeddings (via OpenAI).
189174
{{< /info >}}
190175

176+
### Using Triton Inference Server for chat and embedding
177+
178+
The first step is to install the LLM Host service with the LLM and
179+
embedding models of your choice. The setup will the use the
180+
Triton Inference Server and MLflow at the backend.
181+
For more details, please refer to the [Triton Inference Server](triton-inference-server.md)
182+
and [Mlflow](mlflow.md) documentation.
183+
184+
Once the `llmhost` service is up-and-running, then you can start the Importer
185+
service using the below configuration:
186+
187+
```json
188+
{
189+
"env": {
190+
"username": "your_username",
191+
"db_name": "your_database_name",
192+
"chat_api_provider": "triton",
193+
"embedding_api_provider": "triton",
194+
"chat_api_url": "your-arangodb-llm-host-url",
195+
"embedding_api_url": "your-arangodb-llm-host-url",
196+
"chat_model": "mistral-nemo-instruct",
197+
"embedding_model": "nomic-embed-text-v1"
198+
},
199+
}
200+
```
201+
202+
Where:
203+
- `username`: ArangoDB database user with permissions to create and modify collections
204+
- `db_name`: Name of the ArangoDB database where the knowledge graph will be stored
205+
- `chat_api_provider`: Specifies which LLM provider to use for language model services
206+
- `embedding_api_provider`: API provider for embedding model services (e.g., "triton")
207+
- `chat_api_url`: API endpoint URL for the chat/language model service
208+
- `embedding_api_url`: API endpoint URL for the embedding model service
209+
- `chat_model`: Specific language model to use for text generation and analysis
210+
- `embedding_model`: Specific model to use for generating text embeddings
211+
191212
## Building Knowledge Graphs
192213

193214
Once the service is installed successfully, you can follow these steps

site/content/ai-suite/reference/retriever.md

Lines changed: 69 additions & 47 deletions
Original file line numberDiff line numberDiff line change
@@ -88,62 +88,42 @@ To start the service, use the AI service endpoint `/v1/graphragretriever`.
8888
Please refer to the documentation of [AI service](gen-ai.md) for more
8989
information on how to use it.
9090

91-
### Using Triton Inference Server (Private LLM)
91+
### Using OpenAI for chat and embedding
9292

93-
The first step is to install the LLM Host service with the LLM and
94-
embedding models of your choice. The setup will the use the
95-
Triton Inference Server and MLflow at the backend.
96-
For more details, please refer to the [Triton Inference Server](triton-inference-server.md)
97-
and [Mlflow](mlflow.md) documentation.
98-
99-
Once the `llmhost` service is up-and-running, then you can start the Importer
100-
service using the below configuration:
10193

10294
```json
10395
{
10496
"env": {
10597
"username": "your_username",
10698
"db_name": "your_database_name",
107-
"api_provider": "triton",
108-
"triton_url": "your-arangodb-llm-host-url",
109-
"triton_model": "mistral-nemo-instruct"
99+
"chat_api_provider": "openai",
100+
"chat_api_url": "https://api.openai.com/v1",
101+
"embedding_api_url": "https://api.openai.com/v1",
102+
"chat_model": "gpt-4o",
103+
"embedding_model": "text-embedding-3-small",
104+
"chat_api_key": "your_openai_api_key",
105+
"embedding_api_key": "your_openai_api_key"
110106
},
111107
}
112108
```
113109

114110
Where:
115-
- `username`: ArangoDB database user with permissions to access collections.
116-
- `db_name`: Name of the ArangoDB database where the knowledge graph is stored.
117-
- `api_provider`: Specifies which LLM provider to use.
118-
- `triton_url`: URL of your Triton Inference Server instance. This should be the URL where your `llmhost` service is running.
119-
- `triton_model`: Name of the LLM model to use for text processing.
120-
121-
### Using OpenAI (Public LLM)
122-
123-
```json
124-
{
125-
"env": {
126-
"openai_api_key": "your_openai_api_key",
127-
"username": "your_username",
128-
"db_name": "your_database_name",
129-
"api_provider": "openai"
130-
},
131-
}
132-
```
133-
134-
Where:
135-
- `username`: ArangoDB database user with permissions to access collections.
136-
- `db_name`: Name of the ArangoDB database where the knowledge graph is stored.
137-
- `api_provider`: Specifies which LLM provider to use.
138-
- `openai_api_key`: Your OpenAI API key.
111+
- `username`: ArangoDB database user with permissions to create and modify collections
112+
- `db_name`: Name of the ArangoDB database where the knowledge graph will be stored
113+
- `chat_api_provider`: API provider for language model services
114+
- `embedding_api_url`: API endpoint URL for the embedding model service
115+
- `chat_model`: Specific language model to use for text generation and analysis
116+
- `embedding_model`: Specific model to use for generating text embeddings
117+
- `chat_api_key`: API key for authenticating with the chat/language model service
118+
- `embedding_api_key`: API key for authenticating with the embedding model service
139119

140120
{{< info >}}
141121
By default, for OpenAI API, the service is using
142122
`gpt-4o-mini` and `text-embedding-3-small` models as LLM and
143123
embedding model respectively.
144124
{{< /info >}}
145125

146-
### Using OpenRouter (Gemini, Anthropic, etc.)
126+
### Using OpenRouter for chat and OpenAI for embedding
147127

148128
OpenRouter makes it possible to connect to a huge array of LLM API providers,
149129
including non-OpenAI LLMs like Gemini Flash, Anthropic Claude and publicly hosted
@@ -157,27 +137,69 @@ OpenAI is used for the embedding model.
157137
"env": {
158138
"db_name": "your_database_name",
159139
"username": "your_username",
160-
"api_provider": "openrouter",
161-
"openai_api_key": "your_openai_api_key",
162-
"openrouter_api_key": "your_openrouter_api_key",
163-
"openrouter_model": "mistralai/mistral-nemo" // Specify a model here
140+
"chat_api_provider": "openai",
141+
"embedding_api_provider": "openai",
142+
"chat_api_url": "https://openrouter.ai/api/v1",
143+
"embedding_api_url": "https://api.openai.com/v1",
144+
"chat_model": "mistral-nemo",
145+
"embedding_model": "text-embedding-3-small",
146+
"chat_api_key": "your_openrouter_api_key",
147+
"embedding_api_key": "your_openai_api_key"
164148
},
165149
}
166150
```
167151

168152
Where:
169-
- `username`: ArangoDB database user with permissions to access collections.
170-
- `db_name`: Name of the ArangoDB database where the knowledge graph is stored.
171-
- `api_provider`: Specifies which LLM provider to use.
172-
- `openai_api_key`: Your OpenAI API key (for the embedding model).
173-
- `openrouter_api_key`: Your OpenRouter API key (for the LLM).
174-
- `openrouter_model`: Desired LLM (optional; default is `mistral-nemo`).
153+
- `username`: ArangoDB database user with permissions to access collections
154+
- `db_name`: Name of the ArangoDB database where the knowledge graph is stored
155+
- `chat_api_provider`: API provider for language model services
156+
- `embedding_api_url`: API endpoint URL for the embedding model service
157+
- `chat_model`: Specific language model to use for text generation and analysis
158+
- `embedding_model`: Specific model to use for generating text embeddings
159+
- `chat_api_key`: API key for authenticating with the chat/language model service
160+
- `embedding_api_key`: API key for authenticating with the embedding model service
175161

176162
{{< info >}}
177163
When using OpenRouter, the service defaults to `mistral-nemo` for generation
178164
(via OpenRouter) and `text-embedding-3-small` for embeddings (via OpenAI).
179165
{{< /info >}}
180166

167+
### Using Triton Inference Server for chat and embedding
168+
169+
The first step is to install the LLM Host service with the LLM and
170+
embedding models of your choice. The setup will the use the
171+
Triton Inference Server and MLflow at the backend.
172+
For more details, please refer to the [Triton Inference Server](triton-inference-server.md)
173+
and [Mlflow](mlflow.md) documentation.
174+
175+
Once the `llmhost` service is up-and-running, then you can start the Importer
176+
service using the below configuration:
177+
178+
```json
179+
{
180+
"env": {
181+
"username": "your_username",
182+
"db_name": "your_database_name",
183+
"chat_api_provider": "triton",
184+
"embedding_api_provider": "triton",
185+
"chat_api_url": "your-arangodb-llm-host-url",
186+
"embedding_api_url": "your-arangodb-llm-host-url",
187+
"chat_model": "mistral-nemo-instruct",
188+
"embedding_model": "nomic-embed-text-v1"
189+
},
190+
}
191+
```
192+
193+
Where:
194+
- `username`: ArangoDB database user with permissions to create and modify collections
195+
- `db_name`: Name of the ArangoDB database where the knowledge graph will be stored
196+
- `chat_api_provider`: Specifies which LLM provider to use for language model services
197+
- `embedding_api_provider`: API provider for embedding model services (e.g., "triton")
198+
- `chat_api_url`: API endpoint URL for the chat/language model service
199+
- `embedding_api_url`: API endpoint URL for the embedding model service
200+
- `chat_model`: Specific language model to use for text generation and analysis
201+
- `embedding_model`: Specific model to use for generating text embeddings
202+
181203
## Executing queries
182204

183205
After the Retriever service is installed successfully, you can interact with

site/content/ai-suite/reference/triton-inference-server.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -26,8 +26,8 @@ following steps:
2626

2727
1. Install the Triton LLM Host service.
2828
2. Register your LLM model to MLflow by uploading the required files.
29-
3. Configure the [Importer](importer.md#using-triton-inference-server-private-llm) service to use your LLM model.
30-
4. Configure the [Retriever](retriever.md#using-triton-inference-server-private-llm) service to use your LLM model.
29+
3. Configure the [Importer](importer.md#using-triton-inference-server-for-chat-and-embedding) service to use your LLM model.
30+
4. Configure the [Retriever](retriever.md#using-triton-inference-server-for-chat-and-embedding) service to use your LLM model.
3131

3232
{{< tip >}}
3333
Check out the dedicated [ArangoDB MLflow](mlflow.md) documentation page to learn

0 commit comments

Comments
 (0)