@@ -88,62 +88,42 @@ To start the service, use the AI service endpoint `/v1/graphragretriever`.
8888Please refer to the documentation of [ AI service] ( gen-ai.md ) for more
8989information on how to use it.
9090
91- ### Using Triton Inference Server (Private LLM)
91+ ### Using OpenAI for chat and embedding
9292
93- The first step is to install the LLM Host service with the LLM and
94- embedding models of your choice. The setup will the use the
95- Triton Inference Server and MLflow at the backend.
96- For more details, please refer to the [ Triton Inference Server] ( triton-inference-server.md )
97- and [ Mlflow] ( mlflow.md ) documentation.
98-
99- Once the ` llmhost ` service is up-and-running, then you can start the Importer
100- service using the below configuration:
10193
10294``` json
10395{
10496 "env" : {
10597 "username" : " your_username" ,
10698 "db_name" : " your_database_name" ,
107- "api_provider" : " triton" ,
108- "triton_url" : " your-arangodb-llm-host-url" ,
109- "triton_model" : " mistral-nemo-instruct"
99+ "chat_api_provider" : " openai" ,
100+ "chat_api_url" : " https://api.openai.com/v1" ,
101+ "embedding_api_url" : " https://api.openai.com/v1" ,
102+ "chat_model" : " gpt-4o" ,
103+ "embedding_model" : " text-embedding-3-small" ,
104+ "chat_api_key" : " your_openai_api_key" ,
105+ "embedding_api_key" : " your_openai_api_key"
110106 },
111107}
112108```
113109
114110Where:
115- - ` username ` : ArangoDB database user with permissions to access collections.
116- - ` db_name ` : Name of the ArangoDB database where the knowledge graph is stored.
117- - ` api_provider ` : Specifies which LLM provider to use.
118- - ` triton_url ` : URL of your Triton Inference Server instance. This should be the URL where your ` llmhost ` service is running.
119- - ` triton_model ` : Name of the LLM model to use for text processing.
120-
121- ### Using OpenAI (Public LLM)
122-
123- ``` json
124- {
125- "env" : {
126- "openai_api_key" : " your_openai_api_key" ,
127- "username" : " your_username" ,
128- "db_name" : " your_database_name" ,
129- "api_provider" : " openai"
130- },
131- }
132- ```
133-
134- Where:
135- - ` username ` : ArangoDB database user with permissions to access collections.
136- - ` db_name ` : Name of the ArangoDB database where the knowledge graph is stored.
137- - ` api_provider ` : Specifies which LLM provider to use.
138- - ` openai_api_key ` : Your OpenAI API key.
111+ - ` username ` : ArangoDB database user with permissions to create and modify collections
112+ - ` db_name ` : Name of the ArangoDB database where the knowledge graph will be stored
113+ - ` chat_api_provider ` : API provider for language model services
114+ - ` embedding_api_url ` : API endpoint URL for the embedding model service
115+ - ` chat_model ` : Specific language model to use for text generation and analysis
116+ - ` embedding_model ` : Specific model to use for generating text embeddings
117+ - ` chat_api_key ` : API key for authenticating with the chat/language model service
118+ - ` embedding_api_key ` : API key for authenticating with the embedding model service
139119
140120{{< info >}}
141121By default, for OpenAI API, the service is using
142122` gpt-4o-mini ` and ` text-embedding-3-small ` models as LLM and
143123embedding model respectively.
144124{{< /info >}}
145125
146- ### Using OpenRouter (Gemini, Anthropic, etc.)
126+ ### Using OpenRouter for chat and OpenAI for embedding
147127
148128OpenRouter makes it possible to connect to a huge array of LLM API providers,
149129including non-OpenAI LLMs like Gemini Flash, Anthropic Claude and publicly hosted
@@ -157,27 +137,69 @@ OpenAI is used for the embedding model.
157137 "env" : {
158138 "db_name" : " your_database_name" ,
159139 "username" : " your_username" ,
160- "api_provider" : " openrouter" ,
161- "openai_api_key" : " your_openai_api_key" ,
162- "openrouter_api_key" : " your_openrouter_api_key" ,
163- "openrouter_model" : " mistralai/mistral-nemo" // Specify a model here
140+ "chat_api_provider" : " openai" ,
141+ "embedding_api_provider" : " openai" ,
142+ "chat_api_url" : " https://openrouter.ai/api/v1" ,
143+ "embedding_api_url" : " https://api.openai.com/v1" ,
144+ "chat_model" : " mistral-nemo" ,
145+ "embedding_model" : " text-embedding-3-small" ,
146+ "chat_api_key" : " your_openrouter_api_key" ,
147+ "embedding_api_key" : " your_openai_api_key"
164148 },
165149 }
166150```
167151
168152Where:
169- - ` username ` : ArangoDB database user with permissions to access collections.
170- - ` db_name ` : Name of the ArangoDB database where the knowledge graph is stored.
171- - ` api_provider ` : Specifies which LLM provider to use.
172- - ` openai_api_key ` : Your OpenAI API key (for the embedding model).
173- - ` openrouter_api_key ` : Your OpenRouter API key (for the LLM).
174- - ` openrouter_model ` : Desired LLM (optional; default is ` mistral-nemo ` ).
153+ - ` username ` : ArangoDB database user with permissions to access collections
154+ - ` db_name ` : Name of the ArangoDB database where the knowledge graph is stored
155+ - ` chat_api_provider ` : API provider for language model services
156+ - ` embedding_api_url ` : API endpoint URL for the embedding model service
157+ - ` chat_model ` : Specific language model to use for text generation and analysis
158+ - ` embedding_model ` : Specific model to use for generating text embeddings
159+ - ` chat_api_key ` : API key for authenticating with the chat/language model service
160+ - ` embedding_api_key ` : API key for authenticating with the embedding model service
175161
176162{{< info >}}
177163When using OpenRouter, the service defaults to ` mistral-nemo ` for generation
178164(via OpenRouter) and ` text-embedding-3-small ` for embeddings (via OpenAI).
179165{{< /info >}}
180166
167+ ### Using Triton Inference Server for chat and embedding
168+
169+ The first step is to install the LLM Host service with the LLM and
170+ embedding models of your choice. The setup will the use the
171+ Triton Inference Server and MLflow at the backend.
172+ For more details, please refer to the [ Triton Inference Server] ( triton-inference-server.md )
173+ and [ Mlflow] ( mlflow.md ) documentation.
174+
175+ Once the ` llmhost ` service is up-and-running, then you can start the Importer
176+ service using the below configuration:
177+
178+ ``` json
179+ {
180+ "env" : {
181+ "username" : " your_username" ,
182+ "db_name" : " your_database_name" ,
183+ "chat_api_provider" : " triton" ,
184+ "embedding_api_provider" : " triton" ,
185+ "chat_api_url" : " your-arangodb-llm-host-url" ,
186+ "embedding_api_url" : " your-arangodb-llm-host-url" ,
187+ "chat_model" : " mistral-nemo-instruct" ,
188+ "embedding_model" : " nomic-embed-text-v1"
189+ },
190+ }
191+ ```
192+
193+ Where:
194+ - ` username ` : ArangoDB database user with permissions to create and modify collections
195+ - ` db_name ` : Name of the ArangoDB database where the knowledge graph will be stored
196+ - ` chat_api_provider ` : Specifies which LLM provider to use for language model services
197+ - ` embedding_api_provider ` : API provider for embedding model services (e.g., "triton")
198+ - ` chat_api_url ` : API endpoint URL for the chat/language model service
199+ - ` embedding_api_url ` : API endpoint URL for the embedding model service
200+ - ` chat_model ` : Specific language model to use for text generation and analysis
201+ - ` embedding_model ` : Specific model to use for generating text embeddings
202+
181203## Executing queries
182204
183205After the Retriever service is installed successfully, you can interact with
0 commit comments