-
-
Notifications
You must be signed in to change notification settings - Fork 30
Numbers
You can round, floor or ceil a number like:
t.round(5.2) // 5 => BigNumber
t.floor(5.7) // 5 => BigNumber
t.ceil(5.2) // 6 => BigNumberYou can get any constants like:
t.c("pi") // 3.141592653589793 => BigNumber
t.c("e", 4) // 2.7182 => BigNumberThese are all the constants:
| Name | Value |
|---|---|
| alphaParticleMass | 6.64465675e-27 |
| atomicMass | 1.66053892e-27 |
| Avogadro | 6.02214129e23 |
| Boltzmann | 1.3806488e-23 |
| conductanceQuantum | 7.74809173e-5 |
| e | 2.71828182 |
| earth-moon | 384401 |
| earth-sun | 1.496e8 |
| earthMass | 5.974e+24 |
| earthRadius | 6378 |
| electric | 8.854187e-12 |
| electronMass | 9.10938291e-31 |
| elementaryCharge | 1.60217656e-19 |
| EulerGamma | 0.57721566 |
| Faraday | 96485.3365 |
| fineStructure | 7.29735256e-3 |
| goldenRatio | 1.61803398 |
| gravity | 9.80665 |
| inverseFineStructure | 137.035999 |
| magnetic | 12.5663706e-7 |
| magneticFluxQuantum | 2.06783375e-15 |
| molarGas | 8.3144621 |
| moonMass | 7.348e22 |
| moonRadius | 1738 |
| neutronMass | 1.67492735e-27 |
| NewtonGravitation | 6.67384e-11 |
| pi | 3.14159265 |
| Planck | 6.62606957e-34 |
| proton-electronMassRatio | 1836.15267 |
| proton-neutronMassRatio | 0.99862347 |
| protonMass | 1.67262177e-27 |
| Rydberg | 10973731.5 |
| speedOfLight | 299792458 |
| speedOfSound | 340.27 |
| sqrt(2) | 1.41421356 |
| Stefan-Boltzmann | 5.670373e-8 |
| sunMass | 1.989e30 |
| sunRadius | 695500 |
| TheRockMass | 124.737901 |
| ThomsonCrossSection | 0.66524587e-28 |
| UltimateAnswer | 42 |
| zeroKelvin | -273.15 |
Constants have a precision limit of 250 digits
You can compute constants such as pi, e or the goldenRatio. Computing these value may take a lot more time.
For example, computing 1000 digits of pi took me around 19 seconds on my MacBook Pro.
Here is how you use it:
t.pi() // 3.1415926535897932408 => BigNumber
t.pi(4) // 3.14159264 => BigNumber
t.e() // 2.71828182845904523536 => BigNumber
t.goldenRatio() // 1.618033988749895 => BigNumberNote that you can't compute more than 15 digits of the golden ratio, because of a BigNumber limitation.
You can check pretty efficiently if a number is prime or not like that:
t.isPrime(2011) // trueIf your number is superior to
Number.MAX_SAFE_INTEGER, it won't work
You can get the least factor (that is not 1) of any number n inferior to Number.MAX_SAFE_INTEGER like:
t.leastFactor(50) // 2 => BigNumberYou can get a list of prime factors that compose any number n less than Number.MAX_SAFE_INTEGER like that:
t.primeFactors(100) // [2, 2, 5, 5] => [BigNumber]You can get the number of primes below any number n less than Number.MAX_SAFE_INTEGER like that:
t.primePi(100) // 25 => BigNumberAny questions? Don't hesitate to create an issue and tell me about your problem 😊.
Copyright © 2017-2018 Arthur Guiot