@@ -86,8 +86,8 @@ extractConvInputSlices(RewriterBase &rewriter, Location loc, Value input,
8686 if (isSingleChanneled) {
8787 // Extract input slice of size {wSizeStep} @ [w + kw] for non-channeled
8888 // convolution.
89- SmallVector<int64_t > sizes{wSizeStep};
90- SmallVector<int64_t > strides{1 };
89+ SmallVector<int64_t > sizes = {wSizeStep};
90+ SmallVector<int64_t > strides = {1 };
9191 for (int64_t kw = 0 ; kw < kwSize; ++kw) {
9292 for (int64_t w = 0 ; w < wSize; w += wSizeStep) {
9393 result.push_back (rewriter.create <vector::ExtractStridedSliceOp>(
@@ -97,8 +97,8 @@ extractConvInputSlices(RewriterBase &rewriter, Location loc, Value input,
9797 } else {
9898 // Extract lhs slice of size {n, wSizeStep, c} @ [0, sw * w + dw * kw, 0]
9999 // for channeled convolution.
100- SmallVector<int64_t > sizes{nSize, wSizeStep, cSize};
101- SmallVector<int64_t > strides{1 , 1 , 1 };
100+ SmallVector<int64_t > sizes = {nSize, wSizeStep, cSize};
101+ SmallVector<int64_t > strides = {1 , 1 , 1 };
102102 for (int64_t kw = 0 ; kw < kwSize; ++kw) {
103103 for (int64_t w = 0 ; w < wSize; w += wSizeStep) {
104104 result.push_back (rewriter.create <vector::ExtractStridedSliceOp>(
@@ -135,17 +135,17 @@ extractConvResultSlices(RewriterBase &rewriter, Location loc, Value res,
135135 SmallVector<Value> result;
136136 if (isSingleChanneled) {
137137 // Extract res slice: {wSizeStep} @ [w] for non-channeled convolution.
138- SmallVector<int64_t > sizes{wSizeStep};
139- SmallVector<int64_t > strides{1 };
138+ SmallVector<int64_t > sizes = {wSizeStep};
139+ SmallVector<int64_t > strides = {1 };
140140 for (int64_t w = 0 ; w < wSize; w += wSizeStep) {
141141 result.push_back (rewriter.create <vector::ExtractStridedSliceOp>(
142142 loc, res, /* offsets=*/ ArrayRef<int64_t >{w}, sizes, strides));
143143 }
144144 } else {
145145 // Extract res slice: {n, wSizeStep, f} @ [0, w, 0] for channeled
146146 // convolution.
147- SmallVector<int64_t > sizes{nSize, wSizeStep, fSize };
148- SmallVector<int64_t > strides{1 , 1 , 1 };
147+ SmallVector<int64_t > sizes = {nSize, wSizeStep, fSize };
148+ SmallVector<int64_t > strides = {1 , 1 , 1 };
149149 for (int64_t w = 0 ; w < wSize; w += wSizeStep) {
150150 result.push_back (rewriter.create <vector::ExtractStridedSliceOp>(
151151 loc, res, /* offsets=*/ ArrayRef<int64_t >{0 , w, 0 }, sizes, strides));
@@ -163,15 +163,15 @@ static Value insertConvResultSlices(RewriterBase &rewriter, Location loc,
163163 if (isSingleChanneled) {
164164 // Write back res slice: {wSizeStep} @ [w] for non-channeled convolution.
165165 // This does not depend on kw.
166- SmallVector<int64_t > strides{1 };
166+ SmallVector<int64_t > strides = {1 };
167167 for (int64_t w = 0 ; w < wSize; w += wSizeStep) {
168168 res = rewriter.create <vector::InsertStridedSliceOp>(
169169 loc, resVals[w], res, /* offsets=*/ ArrayRef<int64_t >{w}, strides);
170170 }
171171 } else {
172172 // Write back res slice: {n, wSizeStep, f} @ [0, w, 0] for channeled
173173 // convolution. This does not depend on kw.
174- SmallVector<int64_t > strides{1 , 1 , 1 };
174+ SmallVector<int64_t > strides = {1 , 1 , 1 };
175175 for (int64_t w = 0 ; w < wSize; w += wSizeStep) {
176176 res = rewriter.create <vector::InsertStridedSliceOp>(
177177 loc, resVals[w], res, /* offsets=*/ ArrayRef<int64_t >{0 , w, 0 },
@@ -3505,8 +3505,8 @@ struct Conv1DGenerator
35053505 // ===------------------------------------------------------------------===//
35063506 // Unroll along kw and read slices of lhs and rhs.
35073507 SmallVector<Value> lhsVals, rhsVals, resVals;
3508- auto inOutSliceSizes = SmallVector< int64_t > {nSize, wSizeStep, cSize};
3509- auto inOutStrides = SmallVector< int64_t > {1 , 1 , 1 };
3508+ SmallVector< int64_t > inOutSliceSizes = {nSize, wSizeStep, cSize};
3509+ SmallVector< int64_t > inOutStrides = {1 , 1 , 1 };
35103510
35113511 // Extract lhs slice of size {n, wSizeStep, c}
35123512 // @ [0, sw * w + dw * kw, 0].
@@ -3538,8 +3538,7 @@ struct Conv1DGenerator
35383538
35393539 // Note - the scalable flags are ignored as flattening combined with
35403540 // scalable vectorization is not supported.
3541- auto inOutFlattenSliceSizes =
3542- SmallVector<int64_t >{nSize, wSizeStep * cSize};
3541+ SmallVector<int64_t > inOutFlattenSliceSizes = {nSize, wSizeStep * cSize};
35433542 auto lhsTypeAfterFlattening =
35443543 VectorType::get (inOutFlattenSliceSizes, lhsEltType);
35453544 auto resTypeAfterFlattening =
0 commit comments