@@ -201,7 +201,7 @@ static void print_sample_weights(TransformerWeights *w){
201201
202202// ////////////////////////////////////// ggml structs and functions required to load models, configs and save the model.
203203
204- struct llama_vocab {
204+ struct my_llama_vocab {
205205 using id = int32_t ;
206206 using token = std::string;
207207 using ttype = llama_token_type;
@@ -525,7 +525,7 @@ static std::string llama_escape_whitespaces(const std::string & text) {
525525 return out.str ();
526526}
527527
528- static void load_vocab (const char * filename, const Config * config, struct llama_vocab * vocab) {
528+ static void load_vocab (const char * filename, const Config * config, struct my_llama_vocab * vocab) {
529529 if (is_ggml_file (filename)) {
530530 LOG_INF (" %s: Loading vocabulary from gguf file %s\n " , __func__, filename);
531531 struct ggml_context * ctx_data = NULL ;
@@ -583,13 +583,13 @@ static void load_vocab(const char * filename, const Config * config, struct llam
583583 const int n_vocab = config->vocab_size ;
584584 /* uint32_t max_token_length = */ file.read_u32 (); // unused
585585 vocab->id_to_token .resize (n_vocab);
586- for (llama_vocab ::id id=0 ; id<n_vocab; ++id) {
586+ for (my_llama_vocab ::id id=0 ; id<n_vocab; ++id) {
587587 float_t score = file.read_f32 ();
588588 uint32_t len = file.read_u32 ();
589589 std::string text = file.read_string (len);
590590
591591 unsigned char byte_val;
592- llama_vocab ::ttype type = LLAMA_TOKEN_TYPE_NORMAL;
592+ my_llama_vocab ::ttype type = LLAMA_TOKEN_TYPE_NORMAL;
593593 if (id == UNKNOWN_TOKEN_ID) {
594594 text = " <unk>" ;
595595 type = LLAMA_TOKEN_TYPE_UNKNOWN;
@@ -631,7 +631,7 @@ static void convert_weights_ak_to_gg(struct ggml_tensor * gg_weights, const floa
631631}
632632
633633static void save_as_llama_model (
634- struct llama_vocab * vocab, struct my_llama_model * model, TransformerWeights* w, const char * filename
634+ struct my_llama_vocab * vocab, struct my_llama_model * model, TransformerWeights* w, const char * filename
635635) {
636636 // convert AK weights into GG weights one by one.
637637 // w->token_embedding_table -> model->tok_embeddings
@@ -671,7 +671,7 @@ static void save_as_llama_model(
671671 std::vector<const char *> tokens;
672672 std::vector<float > scores;
673673 std::vector<llama_token_type> token_types;
674- for (const llama_vocab ::token_data & token_data : vocab->id_to_token ) {
674+ for (const my_llama_vocab ::token_data & token_data : vocab->id_to_token ) {
675675 tokens.push_back (token_data.text .c_str ());
676676 scores.push_back (token_data.score );
677677 token_types.push_back (token_data.type );
@@ -905,7 +905,7 @@ int main(int argc, char ** argv) {
905905 fclose (file);
906906 }
907907
908- struct llama_vocab vocab;
908+ struct my_llama_vocab vocab;
909909 load_vocab (params.fn_vocab_model , &config, &vocab);
910910
911911 struct my_llama_model model;
0 commit comments