|
| 1 | +// This file contains functionality for training models using GGML. |
| 2 | +// It is not strictly needed vs. just vanilla GGML but it provides a more high-level interface for common needs such as datasets. |
| 3 | +// At the bottom of this file especially there are relatively high-level functions that are suitable use or adaptation in user code. |
| 4 | +// |
| 5 | +// Module maintainer: Johannes Gäßler (@JohannesGaessler, [email protected]) |
| 6 | + |
| 7 | +#pragma once |
| 8 | + |
| 9 | +#include "ggml.h" |
| 10 | +#include "ggml-backend.h" |
| 11 | + |
| 12 | +#include <stdint.h> |
| 13 | + |
| 14 | +#ifdef __cplusplus |
| 15 | +extern "C" { |
| 16 | +#endif |
| 17 | + |
| 18 | + struct ggml_opt_dataset; |
| 19 | + struct ggml_opt_context; |
| 20 | + struct ggml_opt_result; |
| 21 | + |
| 22 | + typedef struct ggml_opt_dataset * ggml_opt_dataset_t; |
| 23 | + typedef struct ggml_opt_context * ggml_opt_context_t; |
| 24 | + typedef struct ggml_opt_result * ggml_opt_result_t; |
| 25 | + |
| 26 | + // ====== Loss ====== |
| 27 | + |
| 28 | + // built-in loss types, i.e. the built-in quantities minimized by the optimizer |
| 29 | + // custom loss types can be defined via mean or sum which simply reduce the outputs for all datapoints to a single value |
| 30 | + enum ggml_opt_loss_type { |
| 31 | + GGML_OPT_LOSS_TYPE_MEAN, |
| 32 | + GGML_OPT_LOSS_TYPE_SUM, |
| 33 | + GGML_OPT_LOSS_TYPE_CROSS_ENTROPY, |
| 34 | + GGML_OPT_LOSS_TYPE_MEAN_SQUARED_ERROR, |
| 35 | + }; |
| 36 | + |
| 37 | + // ====== Dataset ====== |
| 38 | + |
| 39 | + GGML_API ggml_opt_dataset_t ggml_opt_dataset_init( |
| 40 | + int64_t ne_datapoint, // number of elements per datapoint |
| 41 | + int64_t ne_label, // number of elements per label |
| 42 | + int64_t ndata, // total number of datapoints/labels |
| 43 | + int64_t ndata_shard); // number of datapoints/labels per shard (unit at which the dataset is shuffled/copied) |
| 44 | + GGML_API void ggml_opt_dataset_free(ggml_opt_dataset_t dataset); |
| 45 | + |
| 46 | + // get underlying tensors that store the data |
| 47 | + GGML_API struct ggml_tensor * ggml_opt_dataset_data (ggml_opt_dataset_t dataset); // shape = [ne_datapoint, ndata] |
| 48 | + GGML_API struct ggml_tensor * ggml_opt_dataset_labels(ggml_opt_dataset_t dataset); // shape = [nd_label, ndata] |
| 49 | + |
| 50 | + // shuffle idata first datapoints from dataset with RNG from opt_ctx, shuffle all datapoints if idata is negative |
| 51 | + GGML_API void ggml_opt_dataset_shuffle(ggml_opt_context_t opt_ctx, ggml_opt_dataset_t dataset, int64_t idata); |
| 52 | + |
| 53 | + // get batch at position ibatch from dataset and copy the data to data_batch and labels_batch |
| 54 | + GGML_API void ggml_opt_dataset_get_batch( |
| 55 | + ggml_opt_dataset_t dataset, |
| 56 | + struct ggml_tensor * data_batch, // shape = [ne_datapoint, ndata_batch] |
| 57 | + struct ggml_tensor * labels_batch, // shape = [ne_label, ndata_batch] |
| 58 | + int64_t ibatch); |
| 59 | + |
| 60 | + // ====== Model / Context ====== |
| 61 | + |
| 62 | + enum ggml_opt_build_type { |
| 63 | + GGML_OPT_BUILD_TYPE_FORWARD, |
| 64 | + GGML_OPT_BUILD_TYPE_GRAD, |
| 65 | + GGML_OPT_BUILD_TYPE_OPT, |
| 66 | + }; |
| 67 | + |
| 68 | + // parameters that control which optimizer is used and how said optimizer tries to find the minimal loss |
| 69 | + struct ggml_opt_optimizer_params { |
| 70 | + // AdamW optimizer parameters |
| 71 | + struct { |
| 72 | + float alpha; // learning rate |
| 73 | + float beta1; |
| 74 | + float beta2; |
| 75 | + float eps; // epsilon for numerical stability |
| 76 | + float wd; // weight decay for AdamW, use 0.0f to disable |
| 77 | + } adamw; |
| 78 | + }; |
| 79 | + |
| 80 | + // callback to calculate optimizer parameters prior to a backward pass |
| 81 | + // userdata can be used to pass arbitrary data |
| 82 | + typedef struct ggml_opt_optimizer_params (*ggml_opt_get_optimizer_params)(void * userdata); |
| 83 | + |
| 84 | + // returns the default optimizer params (constant) |
| 85 | + // userdata is not used |
| 86 | + GGML_API struct ggml_opt_optimizer_params ggml_opt_get_default_optimizer_params(void * userdata); |
| 87 | + |
| 88 | + // parameters for initializing a new optimization context |
| 89 | + struct ggml_opt_params { |
| 90 | + ggml_backend_sched_t backend_sched; // defines which backends are used to construct the compute graphs |
| 91 | + |
| 92 | + struct ggml_context * ctx_compute; // created in user code, holds non-static tensors |
| 93 | + |
| 94 | + // the forward graph is defined by inputs and outputs |
| 95 | + // those tensors and all tensors inbetween are not intended to be reusable between multiple optimization contexts |
| 96 | + struct ggml_tensor * inputs; |
| 97 | + struct ggml_tensor * outputs; |
| 98 | + |
| 99 | + enum ggml_opt_loss_type loss_type; |
| 100 | + enum ggml_opt_build_type build_type; |
| 101 | + |
| 102 | + int32_t opt_period; // after how many gradient accumulation steps an optimizer step should be done |
| 103 | + |
| 104 | + ggml_opt_get_optimizer_params get_opt_pars; // callback for calculating optimizer parameters |
| 105 | + void * get_opt_pars_ud; // userdata for calculating optimizer parameters |
| 106 | + }; |
| 107 | + |
| 108 | + // get parameters for an optimization context with defaults set where possible |
| 109 | + // parameters for which no sensible defaults exist are supplied as arguments to this function |
| 110 | + GGML_API ggml_opt_params ggml_opt_default_params( |
| 111 | + ggml_backend_sched_t backend_sched, |
| 112 | + struct ggml_context * ctx_compute, |
| 113 | + struct ggml_tensor * inputs, |
| 114 | + struct ggml_tensor * outputs, |
| 115 | + enum ggml_opt_loss_type loss_type); |
| 116 | + |
| 117 | + GGML_API ggml_opt_context_t ggml_opt_init(struct ggml_opt_params params); |
| 118 | + GGML_API void ggml_opt_free(ggml_opt_context_t opt_ctx); |
| 119 | + |
| 120 | + // set gradients to zero, initilize loss, and optionally reset the optimizer |
| 121 | + GGML_API void ggml_opt_reset(ggml_opt_context_t opt_ctx, bool optimizer); |
| 122 | + |
| 123 | + // get underlying tensors that store data |
| 124 | + GGML_API struct ggml_tensor * ggml_opt_inputs( ggml_opt_context_t opt_ctx); // forward graph input tensor |
| 125 | + GGML_API struct ggml_tensor * ggml_opt_outputs( ggml_opt_context_t opt_ctx); // forward graph output tensor |
| 126 | + GGML_API struct ggml_tensor * ggml_opt_labels( ggml_opt_context_t opt_ctx); // labels to compare outputs against |
| 127 | + GGML_API struct ggml_tensor * ggml_opt_loss( ggml_opt_context_t opt_ctx); // scalar tensor that contains the loss |
| 128 | + GGML_API struct ggml_tensor * ggml_opt_pred( ggml_opt_context_t opt_ctx); // predictions made by outputs |
| 129 | + GGML_API struct ggml_tensor * ggml_opt_ncorrect(ggml_opt_context_t opt_ctx); // number of matching predictions between outputs and labels |
| 130 | + |
| 131 | + GGML_API struct ggml_tensor * ggml_opt_grad_acc(ggml_opt_context_t opt_ctx, struct ggml_tensor * node); |
| 132 | + |
| 133 | + // ====== Optimization Result ====== |
| 134 | + |
| 135 | + GGML_API ggml_opt_result_t ggml_opt_result_init(); |
| 136 | + GGML_API void ggml_opt_result_free(ggml_opt_result_t result); |
| 137 | + GGML_API void ggml_opt_result_reset(ggml_opt_result_t result); |
| 138 | + |
| 139 | + // get data from result, uncertainties are optional and can be ignored by passing NULL |
| 140 | + GGML_API void ggml_opt_result_ndata( ggml_opt_result_t result, int64_t * ndata); // writes 1 value, number of datapoints |
| 141 | + GGML_API void ggml_opt_result_loss( ggml_opt_result_t result, double * loss, double * unc); // writes 1 value |
| 142 | + GGML_API void ggml_opt_result_pred( ggml_opt_result_t result, int32_t * pred); // writes ndata values |
| 143 | + GGML_API void ggml_opt_result_accuracy(ggml_opt_result_t result, double * accuracy, double * unc); // writes 1 value |
| 144 | + |
| 145 | + // ====== Computation ====== |
| 146 | + |
| 147 | + // do forward pass, increment result if not NULL |
| 148 | + GGML_API void ggml_opt_forward(ggml_opt_context_t opt_ctx, ggml_opt_result_t result); |
| 149 | + |
| 150 | + // do forward pass, increment result if not NULL, do backward pass |
| 151 | + GGML_API void ggml_opt_forward_backward(ggml_opt_context_t opt_ctx, ggml_opt_result_t result); |
| 152 | + |
| 153 | + // ############################################################################ |
| 154 | + // ## The high-level functions start here. They do not depend on any private ## |
| 155 | + // ## functions or structs and can be copied to and adapted for user code. ## |
| 156 | + // ############################################################################ |
| 157 | + |
| 158 | + // ====== Intended Usage ====== |
| 159 | + // |
| 160 | + // 1. Select the appropriate loss for your problem. |
| 161 | + // 2. Create a dataset and set the data for the "data" tensor. Also set the "labels" tensor if your loss needs them. |
| 162 | + // Setting the shard size to 1 will be fine, it's the granularity with which data is shuffled/loaded (bigger values are faster). |
| 163 | + // 3. Create a GGML graph for your model with no_alloc == true. Use two separate contexts for the tensors. |
| 164 | + // The first context should contain the model parameters and inputs and be allocated statically in user code. |
| 165 | + // The second context should contain all other tensors and will be (re)allocated automatically. |
| 166 | + // Due to this automated allocation the data of the second context is not defined when accessed in user code. |
| 167 | + // Note that the second dimension of the inputs/outputs are interpreted as the number of datapoints in those tensors. |
| 168 | + // 4. Call ggml_opt_fit. If you need more control you can use ggml_opt_epoch instead. |
| 169 | + |
| 170 | + // signature for a callback while evaluating opt_ctx on dataset, called after an evaluation |
| 171 | + typedef void (*ggml_opt_epoch_callback)( |
| 172 | + bool train, // true after training evaluation, false after validation evaluation |
| 173 | + ggml_opt_context_t opt_ctx, |
| 174 | + ggml_opt_dataset_t dataset, |
| 175 | + ggml_opt_result_t result, // result associated with the dataset subsection |
| 176 | + int64_t ibatch, // number of batches that have been evaluated so far |
| 177 | + int64_t ibatch_max, // total number of batches in this dataset subsection |
| 178 | + int64_t t_start_us); // time at which the evaluation on the dataset subsection was started |
| 179 | + |
| 180 | + // do training on front of dataset, do evaluation only on back of dataset |
| 181 | + GGML_API void ggml_opt_epoch( |
| 182 | + ggml_opt_context_t opt_ctx, |
| 183 | + ggml_opt_dataset_t dataset, |
| 184 | + ggml_opt_result_t result_train, // result to increment during training, ignored if NULL |
| 185 | + ggml_opt_result_t result_eval, // result to increment during evaluation, ignored if NULL |
| 186 | + int64_t idata_split, // data index at which to split training and evaluation |
| 187 | + ggml_opt_epoch_callback callback_train, |
| 188 | + ggml_opt_epoch_callback callback_eval); |
| 189 | + |
| 190 | + // callback that prints a progress bar on stderr |
| 191 | + GGML_API void ggml_opt_epoch_callback_progress_bar( |
| 192 | + bool train, |
| 193 | + ggml_opt_context_t opt_ctx, |
| 194 | + ggml_opt_dataset_t dataset, |
| 195 | + ggml_opt_result_t result, |
| 196 | + int64_t ibatch, |
| 197 | + int64_t ibatch_max, |
| 198 | + int64_t t_start_us); |
| 199 | + |
| 200 | + // fit model defined by inputs and outputs to dataset |
| 201 | + GGML_API void ggml_opt_fit( |
| 202 | + ggml_backend_sched_t backend_sched, // backend scheduler for constructing the compute graphs |
| 203 | + ggml_context * ctx_compute, // context with temporarily allocated tensors to calculate the outputs |
| 204 | + ggml_tensor * inputs, // input tensor with shape [ne_datapoint, ndata_batch] |
| 205 | + ggml_tensor * outputs, // output tensor, must have shape [ne_label, ndata_batch] if labels are used |
| 206 | + ggml_opt_dataset_t dataset, // dataset with data and optionally also labels |
| 207 | + enum ggml_opt_loss_type loss_type, // loss to minimize |
| 208 | + ggml_opt_get_optimizer_params get_opt_pars, // callback to get optimizer params, userdata is pointer to epoch (of type int64_t) |
| 209 | + int64_t nepoch, // how many times the dataset should be iterated over |
| 210 | + int64_t nbatch_logical, // datapoints optimizer step, must be a multiple of ndata_batch in inputs/outputs |
| 211 | + float val_split, // fraction of the dataset to use for validation, must be in [0.0f, 1.0f) |
| 212 | + bool silent); // whether or not info prints to stderr should be suppressed |
| 213 | + |
| 214 | +#ifdef __cplusplus |
| 215 | +} |
| 216 | +#endif |
0 commit comments