@@ -9624,20 +9624,16 @@ static struct ggml_tensor * llm_build_kqv(
96249624 cur = ggml_flash_attn_ext(ctx, q, k, v, kq_mask, kq_scale, hparams.f_max_alibi_bias,
96259625 hparams.attn_soft_cap ? hparams.f_attn_logit_softcapping : 0.0f);
96269626
9627- if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3 || model.arch == LLM_ARCH_GPTNEOX || model.arch == LLM_ARCH_GEMMA2) {
9628- ggml_flash_attn_ext_set_prec(cur, GGML_PREC_F32);
9629- }
9627+ ggml_flash_attn_ext_set_prec(cur, GGML_PREC_F32);
96309628
96319629 cur = ggml_reshape_2d(ctx, cur, n_embd_head_v*n_head, n_tokens);
96329630 } else {
96339631 struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
96349632 cb(kq, "kq", il);
96359633
9636- if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3 || model.arch == LLM_ARCH_GPTNEOX || model.arch == LLM_ARCH_QWEN2 || model.arch == LLM_ARCH_NEMOTRON || model.arch == LLM_ARCH_CHATGLM) {
9637- // for this arch, we need to perform the KQ multiplication with F32 precision, otherwise we get NaNs
9638- // ref: https://github.com/ggerganov/llama.cpp/pull/4490#issuecomment-1859055847
9639- ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
9640- }
9634+ // note: this op tends to require high floating point range
9635+ // while for some models F16 is enough, for others it is not, so we default to F32 here
9636+ ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
96419637
96429638 if (model.arch == LLM_ARCH_GROK) {
96439639 // need to do the following:
@@ -9646,9 +9642,6 @@ static struct ggml_tensor * llm_build_kqv(
96469642 // kq = 30 * tanh(kq / 30)
96479643 // before the softmax below
96489644
9649- //try from phi2
9650- //ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
9651-
96529645 kq = ggml_tanh(ctx, ggml_scale(ctx, kq, 0.08838834764831845f/30.0f));
96539646 kq = ggml_scale(ctx, kq, 30);
96549647 }
0 commit comments