| 
 | 1 | +#include "llama.h"  | 
 | 2 | +#include <cstdio>  | 
 | 3 | +#include <cstring>  | 
 | 4 | +#include <iostream>  | 
 | 5 | +#include <string>  | 
 | 6 | +#include <vector>  | 
 | 7 | + | 
 | 8 | +static void print_usage(int, char ** argv) {  | 
 | 9 | +    printf("\nexample usage:\n");  | 
 | 10 | +    printf("\n    %s -m model.gguf [-c context_size] [-ngl n_gpu_layers]\n", argv[0]);  | 
 | 11 | +    printf("\n");  | 
 | 12 | +}  | 
 | 13 | + | 
 | 14 | +int main(int argc, char ** argv) {  | 
 | 15 | +    std::string model_path;  | 
 | 16 | +    int ngl = 99;  | 
 | 17 | +    int n_ctx = 2048;  | 
 | 18 | + | 
 | 19 | +    // parse command line arguments  | 
 | 20 | +    for (int i = 1; i < argc; i++) {  | 
 | 21 | +        try {  | 
 | 22 | +            if (strcmp(argv[i], "-m") == 0) {  | 
 | 23 | +                if (i + 1 < argc) {  | 
 | 24 | +                    model_path = argv[++i];  | 
 | 25 | +                } else {  | 
 | 26 | +                    print_usage(argc, argv);  | 
 | 27 | +                    return 1;  | 
 | 28 | +                }  | 
 | 29 | +            } else if (strcmp(argv[i], "-c") == 0) {  | 
 | 30 | +                if (i + 1 < argc) {  | 
 | 31 | +                    n_ctx = std::stoi(argv[++i]);  | 
 | 32 | +                } else {  | 
 | 33 | +                    print_usage(argc, argv);  | 
 | 34 | +                    return 1;  | 
 | 35 | +                }  | 
 | 36 | +            } else if (strcmp(argv[i], "-ngl") == 0) {  | 
 | 37 | +                if (i + 1 < argc) {  | 
 | 38 | +                    ngl = std::stoi(argv[++i]);  | 
 | 39 | +                } else {  | 
 | 40 | +                    print_usage(argc, argv);  | 
 | 41 | +                    return 1;  | 
 | 42 | +                }  | 
 | 43 | +            } else {  | 
 | 44 | +                print_usage(argc, argv);  | 
 | 45 | +                return 1;  | 
 | 46 | +            }  | 
 | 47 | +        } catch (std::exception & e) {  | 
 | 48 | +            fprintf(stderr, "error: %s\n", e.what());  | 
 | 49 | +            print_usage(argc, argv);  | 
 | 50 | +            return 1;  | 
 | 51 | +        }  | 
 | 52 | +    }  | 
 | 53 | +    if (model_path.empty()) {  | 
 | 54 | +        print_usage(argc, argv);  | 
 | 55 | +        return 1;  | 
 | 56 | +    }  | 
 | 57 | + | 
 | 58 | +    // only print errors  | 
 | 59 | +    llama_log_set([](enum ggml_log_level level, const char * text, void * /* user_data */) {  | 
 | 60 | +        if (level >= GGML_LOG_LEVEL_ERROR) {  | 
 | 61 | +            fprintf(stderr, "%s", text);  | 
 | 62 | +        }  | 
 | 63 | +    }, nullptr);  | 
 | 64 | + | 
 | 65 | +    // initialize the model  | 
 | 66 | +    llama_model_params model_params = llama_model_default_params();  | 
 | 67 | +    model_params.n_gpu_layers = ngl;  | 
 | 68 | + | 
 | 69 | +    llama_model * model = llama_load_model_from_file(model_path.c_str(), model_params);  | 
 | 70 | +    if (!model) {  | 
 | 71 | +        fprintf(stderr , "%s: error: unable to load model\n" , __func__);  | 
 | 72 | +        return 1;  | 
 | 73 | +    }  | 
 | 74 | + | 
 | 75 | +    // initialize the context  | 
 | 76 | +    llama_context_params ctx_params = llama_context_default_params();  | 
 | 77 | +    ctx_params.n_ctx = n_ctx;  | 
 | 78 | +    ctx_params.n_batch = n_ctx;  | 
 | 79 | + | 
 | 80 | +    llama_context * ctx = llama_new_context_with_model(model, ctx_params);  | 
 | 81 | +    if (!ctx) {  | 
 | 82 | +        fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__);  | 
 | 83 | +        return 1;  | 
 | 84 | +    }  | 
 | 85 | + | 
 | 86 | +    // initialize the sampler  | 
 | 87 | +    llama_sampler * smpl = llama_sampler_chain_init(llama_sampler_chain_default_params());  | 
 | 88 | +    llama_sampler_chain_add(smpl, llama_sampler_init_min_p(0.05f, 1));  | 
 | 89 | +    llama_sampler_chain_add(smpl, llama_sampler_init_temp(0.8f));  | 
 | 90 | +    llama_sampler_chain_add(smpl, llama_sampler_init_dist(LLAMA_DEFAULT_SEED));  | 
 | 91 | + | 
 | 92 | +    // helper function to evaluate a prompt and generate a response  | 
 | 93 | +    auto generate = [&](const std::string & prompt) {  | 
 | 94 | +        std::string response;  | 
 | 95 | + | 
 | 96 | +        // tokenize the prompt  | 
 | 97 | +        const int n_prompt_tokens = -llama_tokenize(model, prompt.c_str(), prompt.size(), NULL, 0, true, true);  | 
 | 98 | +        std::vector<llama_token> prompt_tokens(n_prompt_tokens);  | 
 | 99 | +        if (llama_tokenize(model, prompt.c_str(), prompt.size(), prompt_tokens.data(), prompt_tokens.size(), true, true) < 0) {  | 
 | 100 | +            GGML_ABORT("failed to tokenize the prompt\n");  | 
 | 101 | +        }  | 
 | 102 | + | 
 | 103 | +        // prepare a batch for the prompt  | 
 | 104 | +        llama_batch batch = llama_batch_get_one(prompt_tokens.data(), prompt_tokens.size());  | 
 | 105 | +        llama_token new_token_id;  | 
 | 106 | +        while (true) {  | 
 | 107 | +            // check if we have enough space in the context to evaluate this batch  | 
 | 108 | +            int n_ctx = llama_n_ctx(ctx);  | 
 | 109 | +            int n_ctx_used = llama_get_kv_cache_used_cells(ctx);  | 
 | 110 | +            if (n_ctx_used + batch.n_tokens > n_ctx) {  | 
 | 111 | +                printf("\033[0m\n");  | 
 | 112 | +                fprintf(stderr, "context size exceeded\n");  | 
 | 113 | +                exit(0);  | 
 | 114 | +            }  | 
 | 115 | + | 
 | 116 | +            if (llama_decode(ctx, batch)) {  | 
 | 117 | +                GGML_ABORT("failed to decode\n");  | 
 | 118 | +            }  | 
 | 119 | + | 
 | 120 | +            // sample the next token  | 
 | 121 | +            new_token_id = llama_sampler_sample(smpl, ctx, -1);  | 
 | 122 | + | 
 | 123 | +            // is it an end of generation?  | 
 | 124 | +            if (llama_token_is_eog(model, new_token_id)) {  | 
 | 125 | +                break;  | 
 | 126 | +            }  | 
 | 127 | + | 
 | 128 | +            // convert the token to a string, print it and add it to the response  | 
 | 129 | +            char buf[256];  | 
 | 130 | +            int n = llama_token_to_piece(model, new_token_id, buf, sizeof(buf), 0, true);  | 
 | 131 | +            if (n < 0) {  | 
 | 132 | +                GGML_ABORT("failed to convert token to piece\n");  | 
 | 133 | +            }  | 
 | 134 | +            std::string piece(buf, n);  | 
 | 135 | +            printf("%s", piece.c_str());  | 
 | 136 | +            fflush(stdout);  | 
 | 137 | +            response += piece;  | 
 | 138 | + | 
 | 139 | +            // prepare the next batch with the sampled token  | 
 | 140 | +            batch = llama_batch_get_one(&new_token_id, 1);  | 
 | 141 | +        }  | 
 | 142 | + | 
 | 143 | +        return response;  | 
 | 144 | +    };  | 
 | 145 | + | 
 | 146 | +    std::vector<llama_chat_message> messages;  | 
 | 147 | +    std::vector<char> formatted(llama_n_ctx(ctx));  | 
 | 148 | +    int prev_len = 0;  | 
 | 149 | +    while (true) {  | 
 | 150 | +        // get user input  | 
 | 151 | +        printf("\033[32m> \033[0m");  | 
 | 152 | +        std::string user;  | 
 | 153 | +        std::getline(std::cin, user);  | 
 | 154 | + | 
 | 155 | +        if (user.empty()) {  | 
 | 156 | +            break;  | 
 | 157 | +        }  | 
 | 158 | + | 
 | 159 | +        // add the user input to the message list and format it  | 
 | 160 | +        messages.push_back({"user", strdup(user.c_str())});  | 
 | 161 | +        int new_len = llama_chat_apply_template(model, nullptr, messages.data(), messages.size(), true, formatted.data(), formatted.size());  | 
 | 162 | +        if (new_len > (int)formatted.size()) {  | 
 | 163 | +            formatted.resize(new_len);  | 
 | 164 | +            new_len = llama_chat_apply_template(model, nullptr, messages.data(), messages.size(), true, formatted.data(), formatted.size());  | 
 | 165 | +        }  | 
 | 166 | +        if (new_len < 0) {  | 
 | 167 | +            fprintf(stderr, "failed to apply the chat template\n");  | 
 | 168 | +            return 1;  | 
 | 169 | +        }  | 
 | 170 | + | 
 | 171 | +        // remove previous messages to obtain the prompt to generate the response  | 
 | 172 | +        std::string prompt(formatted.begin() + prev_len, formatted.begin() + new_len);  | 
 | 173 | + | 
 | 174 | +        // generate a response  | 
 | 175 | +        printf("\033[33m");  | 
 | 176 | +        std::string response = generate(prompt);  | 
 | 177 | +        printf("\n\033[0m");  | 
 | 178 | + | 
 | 179 | +        // add the response to the messages  | 
 | 180 | +        messages.push_back({"assistant", strdup(response.c_str())});  | 
 | 181 | +        prev_len = llama_chat_apply_template(model, nullptr, messages.data(), messages.size(), false, nullptr, 0);  | 
 | 182 | +        if (prev_len < 0) {  | 
 | 183 | +            fprintf(stderr, "failed to apply the chat template\n");  | 
 | 184 | +            return 1;  | 
 | 185 | +        }  | 
 | 186 | +    }  | 
 | 187 | + | 
 | 188 | +    // free resources  | 
 | 189 | +    for (auto & msg : messages) {  | 
 | 190 | +        free(const_cast<char *>(msg.content));  | 
 | 191 | +    }  | 
 | 192 | +    llama_sampler_free(smpl);  | 
 | 193 | +    llama_free(ctx);  | 
 | 194 | +    llama_free_model(model);  | 
 | 195 | + | 
 | 196 | +    return 0;  | 
 | 197 | +}  | 
0 commit comments