|
| 1 | +import itertools |
| 2 | +import time |
| 3 | +import copy |
| 4 | +import random |
| 5 | +from random import shuffle |
| 6 | +import numpy as np |
| 7 | +from scipy import optimize |
| 8 | +import pytheus.fancy_classes as fc |
| 9 | +import pytheus.theseus as th |
| 10 | + |
| 11 | + |
| 12 | +def flatten(l): |
| 13 | + return [item for sublist in l for item in sublist] |
| 14 | + |
| 15 | + |
| 16 | +def is_connected(lst): |
| 17 | + # print('lst: ',lst) |
| 18 | + in_list = [lst[0][0], lst[0][1]] |
| 19 | + |
| 20 | + cnum_vertices = len(set(flatten([[vv[0], vv[1]] for vv in lst]))) |
| 21 | + |
| 22 | + curr_len = len(in_list) - 1 |
| 23 | + # print('len(in_list)<cnum_vertices: ',len(in_list)<cnum_vertices) |
| 24 | + # print('len(in_list)>curr_len: ',len(in_list)>curr_len) |
| 25 | + |
| 26 | + while len(in_list) < cnum_vertices and len(in_list) > curr_len: |
| 27 | + curr_len = len(in_list) |
| 28 | + for ee in lst[1:]: |
| 29 | + if (ee[0] in in_list) and (not ee[1] in in_list): |
| 30 | + in_list.append(ee[1]) |
| 31 | + if (ee[1] in in_list) and (not ee[0] in in_list): |
| 32 | + in_list.append(ee[0]) |
| 33 | + |
| 34 | + # print(in_list) |
| 35 | + # print(cnum_vertices) |
| 36 | + return len(in_list) == cnum_vertices |
| 37 | + |
| 38 | + |
| 39 | +def make_list_unique(lst): |
| 40 | + unique_lst = [list(x) for x in set(tuple(x) for x in lst)] |
| 41 | + return unique_lst |
| 42 | + |
| 43 | + |
| 44 | +def is_substructure(lst1, lst2): |
| 45 | + if len(lst1) < len(lst2): |
| 46 | + return False |
| 47 | + |
| 48 | + rr = [ll in lst1 for ll in lst2] |
| 49 | + if not all(rr): |
| 50 | + return False |
| 51 | + |
| 52 | + unique_lst2 = make_list_unique(lst2) |
| 53 | + if len(lst2) > len(unique_lst2): |
| 54 | + return False |
| 55 | + |
| 56 | + return True |
| 57 | + |
| 58 | + |
| 59 | +def compute_all_possibilies(full_graph, all_curr_subsequence, num_vertices, num_cols): |
| 60 | + # print('all_curr_subsequence: ', all_curr_subsequence) |
| 61 | + # time.sleep(0.5) |
| 62 | + all_permutations = list(itertools.permutations(list(range(num_vertices)))) |
| 63 | + all_permutations_cols = list(itertools.permutations(list(range(num_cols)))) |
| 64 | + curr_graph = all_curr_subsequence[-1] |
| 65 | + |
| 66 | + # print('len(all_permutations): ', len(all_permutations)) |
| 67 | + |
| 68 | + all_curr_subsequence_ext = all_curr_subsequence + [[ee] for ee in full_graph] |
| 69 | + # print('len(all_curr_subgraphs_ext): ', len(all_curr_subsequence_ext)) |
| 70 | + all_possibilities = [] |
| 71 | + for curr_substr in all_curr_subsequence_ext: |
| 72 | + if len(curr_substr) == 1: |
| 73 | + new_graph = curr_graph + curr_substr |
| 74 | + if is_substructure(full_graph, new_graph): |
| 75 | + if not new_graph in all_possibilities: |
| 76 | + all_possibilities.append(new_graph) |
| 77 | + |
| 78 | + if len(curr_substr) > 1: |
| 79 | + if is_connected(curr_substr): |
| 80 | + # print('curr_substr: ',curr_substr) |
| 81 | + for curr_perm in all_permutations: |
| 82 | + # print('all_permutations: ', all_permutations) |
| 83 | + |
| 84 | + # print('curr_substr: ',curr_substr) |
| 85 | + for curr_col_perm in all_permutations_cols: |
| 86 | + curr_substr_perm = [] |
| 87 | + for cedge in curr_substr: |
| 88 | + nedge = [curr_perm[cedge[0]], curr_perm[cedge[1]], curr_col_perm[cedge[2]], |
| 89 | + curr_col_perm[cedge[3]]] |
| 90 | + # print('nedge: ', nedge) |
| 91 | + if nedge[0] > nedge[1]: |
| 92 | + nedge = [nedge[1], nedge[0], nedge[2], nedge[3]] |
| 93 | + curr_substr_perm.append(nedge) |
| 94 | + # time.sleep(0.1) |
| 95 | + |
| 96 | + new_graph = curr_graph + curr_substr_perm |
| 97 | + # print(' new_graph: ',new_graph, '(curr_perm: ', curr_perm,')') |
| 98 | + |
| 99 | + # time.sleep(0.1) |
| 100 | + if is_substructure(full_graph, new_graph): |
| 101 | + # print('is_substructure') |
| 102 | + if not new_graph in all_possibilities: |
| 103 | + # print('not new_graph in all_possibilities') |
| 104 | + all_possibilities.append(new_graph) |
| 105 | + |
| 106 | + return all_possibilities |
| 107 | + |
| 108 | + |
| 109 | +def compute_assembly_index(full_graph, all_curr_subsequence, assembly_index_col, num_vertices, num_cols): |
| 110 | + # print(' - - - - -') |
| 111 | + # print('in compute_assembly_index') |
| 112 | + # print(' full_graph: ',full_graph) |
| 113 | + # for csg in all_curr_subsequence: |
| 114 | + # print(' csg: ', csg) |
| 115 | + # time.sleep(0.25) |
| 116 | + |
| 117 | + if len(full_graph) == 0: |
| 118 | + return 0, [] |
| 119 | + if len(full_graph) == 1: |
| 120 | + return 1, [[full_graph[0]]] |
| 121 | + if len(full_graph) == 2: |
| 122 | + return 2, [[full_graph[0]], full_graph] |
| 123 | + |
| 124 | + global min_assembly_idx, min_ai_structure, assembly_index_collection |
| 125 | + num_vertices = max([max(ll[0:2]) for ll in full_graph]) + 1 |
| 126 | + num_cols = max([max(ll[2:4]) for ll in full_graph]) + 1 |
| 127 | + |
| 128 | + all_possibilies = compute_all_possibilies(full_graph, all_curr_subsequence, num_vertices, num_cols) |
| 129 | + # print('len(all_possibilies): ', len(all_possibilies)) |
| 130 | + for new_graph in all_possibilies: |
| 131 | + new_curr_subgraphs = copy.deepcopy(all_curr_subsequence) |
| 132 | + new_curr_subgraphs.append(new_graph) |
| 133 | + # print('new_graph: ', new_graph) |
| 134 | + # time.sleep(1) |
| 135 | + |
| 136 | + if len(new_curr_subgraphs) < min_assembly_idx: |
| 137 | + if is_substructure(full_graph, new_graph) and is_substructure(new_graph, full_graph): |
| 138 | + # print(' DONE !!! Assembly Index: ', len(new_curr_subgraphs)) |
| 139 | + assembly_index_col.append(len(new_curr_subgraphs)) |
| 140 | + if len(new_curr_subgraphs) < min_assembly_idx: |
| 141 | + min_assembly_idx = len(new_curr_subgraphs) |
| 142 | + min_ai_structure = new_curr_subgraphs |
| 143 | + # print('new best value: ', min_assembly_idx) |
| 144 | + else: |
| 145 | + compute_assembly_index(full_graph, new_curr_subgraphs, assembly_index_collection, num_vertices, |
| 146 | + num_cols) |
| 147 | + |
| 148 | + return min_assembly_idx, min_ai_structure |
| 149 | + |
| 150 | + |
| 151 | +def assembly_index_unweighted(gg, num_vertices, num_cols): |
| 152 | + global min_assembly_idx, min_ai_structure, assembly_index_collection |
| 153 | + min_assembly_idx = 666 |
| 154 | + min_ai_structure = [] |
| 155 | + assembly_index_collection = [] |
| 156 | + |
| 157 | + if len(gg) == 0: |
| 158 | + # print('assembly_index_collection: ', 0) |
| 159 | + return 0 |
| 160 | + |
| 161 | + init_structure = [gg[0]] |
| 162 | + # print(gg) |
| 163 | + |
| 164 | + min_assembly_idx, min_ai_structure = compute_assembly_index(gg, [init_structure], assembly_index_collection, |
| 165 | + num_vertices, num_cols) |
| 166 | + # print('assembly_index_collection: ', min_assembly_idx) |
| 167 | + # for ii in min_ai_structure: |
| 168 | + # print(ii) |
| 169 | + |
| 170 | + return min_assembly_idx |
| 171 | + |
| 172 | + |
| 173 | +def sample_subgraph(graph, size_of_graph): |
| 174 | + all_edges = graph.edges |
| 175 | + all_weights = graph.weights |
| 176 | + |
| 177 | + curr_edges = [] |
| 178 | + while len(curr_edges) < size_of_graph: |
| 179 | + ridx = random.randint(0, len(all_edges) - 1) |
| 180 | + if random.random() < abs(all_weights[ridx]): |
| 181 | + if not all_edges[ridx] in curr_edges: |
| 182 | + curr_edges.append(all_edges[ridx]) |
| 183 | + |
| 184 | + curr_graph = fc.Graph(curr_edges) |
| 185 | + for edge in curr_edges: |
| 186 | + curr_graph[edge] = graph[edge] |
| 187 | + |
| 188 | + return curr_graph |
| 189 | + |
| 190 | + |
| 191 | +def assembly_index(graph, cnfg): |
| 192 | + print("computing assembly index") |
| 193 | + num_vertices = cnfg["num_vertices"] |
| 194 | + num_cols = cnfg["num_cols"] |
| 195 | + size_of_graph = cnfg["size_of_graph"] |
| 196 | + |
| 197 | + all_sampled_assembly_indices = [] |
| 198 | + |
| 199 | + for ii in range(cnfg["sample_size"]): |
| 200 | + sampled_graph = sample_subgraph(graph, size_of_graph) |
| 201 | + sampled_graph = sampled_graph.edges |
| 202 | + sampled_graph = [list(edge) for edge in sampled_graph] |
| 203 | + sampled_graph.sort() |
| 204 | + min_assembly_idx = assembly_index_unweighted(sampled_graph, num_vertices, num_cols) |
| 205 | + all_sampled_assembly_indices.append(min_assembly_idx) |
| 206 | + |
| 207 | + weighted_assembly_index = sum(all_sampled_assembly_indices) / len(all_sampled_assembly_indices) |
| 208 | + return weighted_assembly_index |
| 209 | + |
| 210 | + |
| 211 | +def sample_top(graph, cnfg, ii): |
| 212 | + sorted_inds = list(np.argsort(graph.weights)) |
| 213 | + sorted_inds.reverse() |
| 214 | + sorted_edges = [graph.edges[ind] for ind in sorted_inds] |
| 215 | + # weight of the edge that gets promoted |
| 216 | + weight = graph[sorted_edges[ii + cnfg["size_of_graph"]]] |
| 217 | + sampled_edges = sorted_edges[:cnfg["size_of_graph"] - 1] + [sorted_edges[ii + cnfg["size_of_graph"]]] |
| 218 | + sampled_edges = [list(edge) for edge in sampled_edges] |
| 219 | + sampled_edges.sort() |
| 220 | + return sampled_edges, weight |
| 221 | + |
| 222 | + |
| 223 | +def sample_bottom(graph, cnfg, ii): |
| 224 | + sorted_inds = list(np.argsort(graph.weights)) |
| 225 | + sorted_inds.reverse() |
| 226 | + sorted_edges = [graph.edges[ind] for ind in sorted_inds] |
| 227 | + # weight of the edge that gets demoted |
| 228 | + weight = graph[sorted_edges[ii]] |
| 229 | + sampled_edges = sorted_edges[:ii] + sorted_edges[ii + 1:cnfg["size_of_graph"]] + [sorted_edges[ |
| 230 | + cnfg["size_of_graph"] + ii]] |
| 231 | + sampled_edges = [list(edge) for edge in sampled_edges] |
| 232 | + sampled_edges.sort() |
| 233 | + return sampled_edges, weight |
| 234 | + |
| 235 | + |
| 236 | +def top_n_assembly(graph, cnfg): |
| 237 | + print("computing top_n_assembly loss") |
| 238 | + num_vertices = cnfg["num_vertices"] |
| 239 | + num_cols = cnfg["num_cols"] |
| 240 | + size_of_graph = cnfg["size_of_graph"] |
| 241 | + |
| 242 | + for e in graph.edges: |
| 243 | + graph[e] = np.abs(graph[e]) |
| 244 | + |
| 245 | + sorted_inds = list(np.argsort(graph.weights)) |
| 246 | + sorted_inds.reverse() |
| 247 | + sorted_edges = [graph.edges[ind] for ind in sorted_inds] |
| 248 | + top_edges = sorted_edges[:cnfg["size_of_graph"]] |
| 249 | + top_edges = [list(edge) for edge in top_edges] |
| 250 | + top_edges.sort() |
| 251 | + curr_assembly = assembly_index_unweighted(top_edges, num_vertices, num_cols) |
| 252 | + |
| 253 | + lossfunc = 0 |
| 254 | + |
| 255 | + for ii in range(len(graph) - cnfg["size_of_graph"]): |
| 256 | + # check the assembly index if smallest of top edges was switched out for each of the bottom edges |
| 257 | + # get weight of bottom edge to be promoted |
| 258 | + sampled_edges, weight = sample_top(graph, cnfg, ii) |
| 259 | + sample_assembly = assembly_index_unweighted(sampled_edges, num_vertices, num_cols) |
| 260 | + lossfunc += (sample_assembly - curr_assembly) * weight |
| 261 | + |
| 262 | + for ii in range(cnfg["size_of_graph"]): |
| 263 | + # check the assembly index if biggest of bottom edges was switched out for each of the top edges |
| 264 | + # get weight of top edge to be demoted |
| 265 | + sampled_edges, weight = sample_bottom(graph, cnfg, ii) |
| 266 | + sample_assembly = assembly_index_unweighted(sampled_edges, num_vertices, num_cols) |
| 267 | + lossfunc += (curr_assembly - sample_assembly) * weight |
| 268 | + |
| 269 | + return lossfunc |
| 270 | + |
| 271 | + |
| 272 | +if __name__ == "__main__": |
| 273 | + cnfg = { |
| 274 | + "num_vertices": 4, |
| 275 | + "num_cols": 2, |
| 276 | + "size_of_graph": 8} |
| 277 | + gg = fc.Graph(th.buildAllEdges([2, 2, 2, 2])) |
| 278 | + for e in gg.edges: |
| 279 | + gg[e] = random.random() |
| 280 | + ai = top_n_assembly(gg, cnfg) |
| 281 | + print(ai) |
0 commit comments