Skip to content

Commit 69bac45

Browse files
large-scale discovery optical table for sharp focus benchmark
1 parent d424ac4 commit 69bac45

File tree

1 file changed

+55
-0
lines changed

1 file changed

+55
-0
lines changed
Lines changed: 55 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,55 @@
1+
# Setting the path for XLuminA modules:
2+
import os
3+
import sys
4+
current_path = os.path.abspath(os.path.join('..'))
5+
dir_path = os.path.dirname(current_path)
6+
module_path = os.path.join(dir_path)
7+
if module_path not in sys.path:
8+
sys.path.append(module_path)
9+
10+
from xlumina.__init__ import um, nm, cm, mm
11+
from xlumina.vectorized_optics import *
12+
from xlumina.optical_elements import hybrid_setup_sharp_focus
13+
from xlumina.loss_functions import vectorized_loss_hybrid
14+
from xlumina.toolbox import space, softmin
15+
import jax.numpy as jnp
16+
17+
"""
18+
Large-scale setup for Dorn, Quabis and Leuchs (2004) benchmark rediscovery:
19+
20+
3x3 initial setup - light gets detected across 6 detectors.
21+
"""
22+
23+
# 1. System specs:
24+
sensor_lateral_size = 1024 # Resolution
25+
wavelength = 635*nm
26+
x_total = 2500*um
27+
x, y = space(x_total, sensor_lateral_size)
28+
shape = jnp.shape(x)[0]
29+
30+
# 2. Define the optical functions: two orthogonally polarized beams:
31+
w0 = (1200*um, 1200*um)
32+
ls1 = PolarizedLightSource(x, y, wavelength)
33+
ls1.gaussian_beam(w0=w0, jones_vector=(1, 1))
34+
35+
# 3. Define the output (High Resolution) detection:
36+
x_out, y_out = jnp.array(space(10*um, 400))
37+
38+
# 4. High NA objective lens specs:
39+
NA = 0.9
40+
radius_lens = 3.6*mm/2
41+
f_lens = radius_lens / NA
42+
43+
# 5. Static parameters - don't change during optimization:
44+
fixed_params = [radius_lens, f_lens, x_out, y_out]
45+
46+
# 6. Define the loss function:
47+
@jit
48+
def loss_hybrid_sharp_focus(parameters):
49+
# Output from hybrid_setup is jnp.array(6, N, N): for 6 detectors
50+
detected_z_intensities, _ = hybrid_setup_sharp_focus(ls1, ls1, ls1, ls1, ls1, ls1, parameters, fixed_params)
51+
52+
# Get the minimum value within loss value array of shape (6, 1, 1)
53+
loss_val = softmin(vectorized_loss_hybrid(detected_z_intensities))
54+
55+
return loss_val

0 commit comments

Comments
 (0)