chore: Remove DimensionalData v0.29.25 compatibility #118
Annotations
4 errors and 1 warning
|
Documentation
Process completed with exit code 1.
|
|
Documentation:
../../../.julia/packages/Documenter/xvqbW/src/utilities/utilities.jl#L47
failed to run `@example` block in docs/src/examples.md:659-702
```@example
using ArviZPythonPlots, Distributions, PythonCall
x = range(0, 1; length=100)
dist = pdf.(Beta(2, 5), x)
style_list = [
"default",
["default", "arviz-colors"],
"arviz-darkgrid",
"arviz-whitegrid",
"arviz-white",
"arviz-grayscale",
["arviz-white", "arviz-redish"],
["arviz-white", "arviz-bluish"],
["arviz-white", "arviz-orangish"],
["arviz-white", "arviz-brownish"],
["arviz-white", "arviz-purplish"],
["arviz-white", "arviz-cyanish"],
["arviz-white", "arviz-greenish"],
["arviz-white", "arviz-royish"],
["arviz-white", "arviz-viridish"],
["arviz-white", "arviz-plasmish"],
"arviz-doc",
"arviz-docgrid",
]
fig = figure(; figsize=(20, 10))
for (idx, style) in enumerate(style_list)
pywith(pyplot.style.context(style; after_reset=true)) do _
ax = fig.add_subplot(5, 4, idx; label=idx)
colors = pyplot.rcParams["axes.prop_cycle"].by_key()["color"]
for i in 0:(length(colors) - 1)
ax.plot(x, dist .- i, "C$i"; label="C$i")
end
ax.set_title(style)
ax.set_xlabel("x")
ax.set_ylabel("f(x)"; rotation=0, labelpad=15)
ax.set_xticklabels([])
end
end
tight_layout()
gcf()
```
exception =
Python: ValueError: NoneType copy mode not allowed.
Python stacktrace:
[1] __array__
@ ~/.julia/packages/PythonCall/wkBj7/src/JlWrap/array.jl:371
[2] to_numpy
@ ~/.julia/packages/PythonCall/wkBj7/src/JlWrap/array.jl:374
[3] _unpack_to_numpy
@ matplotlib.cbook ~/work/ArviZPythonPlots.jl/ArviZPythonPlots.jl/docs/.CondaPkg/.pixi/envs/default/lib/python3.12/site-packages/matplotlib/cbook.py:2375
[4] _check_1d
@ matplotlib.cbook ~/work/ArviZPythonPlots.jl/ArviZPythonPlots.jl/docs/.CondaPkg/.pixi/envs/default/lib/python3.12/site-packages/matplotlib/cbook.py:1361
[5] _plot_args
@ matplotlib.axes._base ~/work/ArviZPythonPlots.jl/ArviZPythonPlots.jl/docs/.CondaPkg/.pixi/envs/default/lib/python3.12/site-packages/matplotlib/axes/_base.py:483
[6] __call__
@ matplotlib.axes._base ~/work/ArviZPythonPlots.jl/ArviZPythonPlots.jl/docs/.CondaPkg/.pixi/envs/default/lib/python3.12/site-packages/matplotlib/axes/_base.py:297
[7] plot
@ matplotlib.axes._axes ~/work/ArviZPythonPlots.jl/ArviZPythonPlots.jl/docs/.CondaPkg/.pixi/envs/default/lib/python3.12/site-packages/matplotlib/axes/_axes.py:1777
Stacktrace:
[1] pythrow()
@ PythonCall.Core ~/.julia/packages/PythonCall/wkBj7/src/Core/err.jl:77
[2] errcheck
@ ~/.julia/packages/PythonCall/wkBj7/src/Core/err.jl:10 [inlined]
[3] pycallargs(f::Py, args::Py, kwargs::Py)
@ PythonCall.Core ~/.julia/packages/PythonCall/wkBj7/src/Core/builtins.jl:195
[4] pycall(::Py, ::StepRangeLen{Float64, Base.TwicePrecision{Float64}, Base.TwicePrecision{Float64}, Int64}, ::Vararg{Any}; kwargs::@kwargs{label::String})
@ PythonCall.Core ~/.julia/packages/PythonCall/wkBj7/src/Core/builtins.jl:207
[5] (::Py)(::StepRangeLen{Float64, Base.TwicePrecision{Float64}, Base.TwicePrecision{Float64}, Int64}, ::Vararg{Any}; kwargs::@kwargs{label::String})
@ PythonCall.Core ~/.julia/packages/PythonCall/wkBj7/src/Core/Py.jl:363
[6] (::Main.__atexample__316.var"#2#3"{String, Int64})(::Py)
@ Main.__atexample__316 ./examples.md:692
[7] pywith(f::Main.__atexample__316.var"#2#3"{String, Int64}, o::Py, d::Nothing)
@ PythonCall.Core ~/.julia/packages/PythonCall/wkBj7/src/Core/builtins.jl:1432
[8] pywith(f::Function, o::Py)
@ PythonCall.Core ~/.julia/packages/PythonCall/wkBj7/src/Core/builtins.jl:1426
[9] top-level scope
@ examples.md:688
[10] eval(m::Module, e::Any)
@ Core ./boot.jl:489
[11] #61
@ ~/.julia/packages/Documenter/xvqbW/src/expander_pipeline.jl:879 [inlined]
[12] cd(f::Documenter.var"#61#62"{Module, Expr}, dir::String)
@ Base.Filesystem ./file.jl:112
[13] (::Documenter.var"#59#60"
|
|
Documentation:
../../../.julia/packages/Documenter/xvqbW/src/utilities/utilities.jl#L47
failed to run `@example` block in docs/src/examples.md:597-611
```@example
using ArviZ, ArviZPythonPlots, ArviZExampleData, DimensionalData
use_style("arviz-darkgrid")
data = load_example_data("regression1d")
x = range(0, 1; length=100)
posterior = data.posterior
constant_data = convert_to_dataset((; x); default_dims=())
y_model = broadcast_dims(muladd, posterior.intercept, posterior.slope, constant_data.x)
posterior = merge(posterior, (; y_model))
data = merge(data, InferenceData(; posterior, constant_data))
plot_lm("y"; idata=data, x="x", y_model="y_model")
gcf()
```
exception =
Python: ValueError: NoneType copy mode not allowed.
Python stacktrace:
[1] __array__
@ ~/.julia/packages/PythonCall/wkBj7/src/JlWrap/array.jl:371
[2] to_numpy
@ ~/.julia/packages/PythonCall/wkBj7/src/JlWrap/array.jl:374
Stacktrace:
[1] pythrow()
@ PythonCall.Core ~/.julia/packages/PythonCall/wkBj7/src/Core/err.jl:77
[2] errcheck
@ ~/.julia/packages/PythonCall/wkBj7/src/Core/err.jl:10 [inlined]
[3] pycallargs(f::Py)
@ PythonCall.Core ~/.julia/packages/PythonCall/wkBj7/src/Core/builtins.jl:193
[4] #pycall#26
@ ~/.julia/packages/PythonCall/wkBj7/src/Core/builtins.jl:217 [inlined]
[5] pycall
@ ~/.julia/packages/PythonCall/wkBj7/src/Core/builtins.jl:203 [inlined]
[6] Py
@ ~/.julia/packages/PythonCall/wkBj7/src/Core/Py.jl:363 [inlined]
[7] topytype(x::StepRangeLen{Float64, Base.TwicePrecision{Float64}, Base.TwicePrecision{Float64}, Int64})
@ ArviZPythonPlots ~/work/ArviZPythonPlots.jl/ArviZPythonPlots.jl/src/utils.jl:47
[8] _to_xarray(data::DimensionalData.DimVector{Float64, Tuple{DimensionalData.Dimensions.Dim{:x_dim_1, DimensionalData.Dimensions.Lookups.NoLookup{Base.OneTo{Int64}}}}, Tuple{}, StepRangeLen{Float64, Base.TwicePrecision{Float64}, Base.TwicePrecision{Float64}, Int64}, Symbol, DimensionalData.Dimensions.Lookups.NoMetadata})
@ ArviZPythonPlots ~/work/ArviZPythonPlots.jl/ArviZPythonPlots.jl/src/xarray.jl:28
[9] map(f::typeof(ArviZPythonPlots._to_xarray), t::Tuple{DimensionalData.DimVector{Float64, Tuple{DimensionalData.Dimensions.Dim{:x_dim_1, DimensionalData.Dimensions.Lookups.NoLookup{Base.OneTo{Int64}}}}, Tuple{}, StepRangeLen{Float64, Base.TwicePrecision{Float64}, Base.TwicePrecision{Float64}, Int64}, Symbol, DimensionalData.Dimensions.Lookups.NoMetadata}})
@ Base ./tuple.jl:358
[10] map
@ ./namedtuple.jl:263 [inlined]
[11] _to_xarray(data::InferenceObjects.Dataset{(:x,), @NamedTuple{x::Float64}, 1, @NamedTuple{x::StepRangeLen{Float64, Base.TwicePrecision{Float64}, Base.TwicePrecision{Float64}, Int64}}, DimensionalData.DimStack{(:x,), @NamedTuple{x::Float64}, 1, @NamedTuple{x::StepRangeLen{Float64, Base.TwicePrecision{Float64}, Base.TwicePrecision{Float64}, Int64}}, Tuple{DimensionalData.Dimensions.Dim{:x_dim_1, DimensionalData.Dimensions.Lookups.NoLookup{Base.OneTo{Int64}}}}, Tuple{}, Tuple{Tuple{DimensionalData.Dimensions.Dim{:x_dim_1, Colon}}}, Dict{String, Any}, Tuple{DimensionalData.Dimensions.Lookups.NoMetadata}}})
@ ArviZPythonPlots ~/work/ArviZPythonPlots.jl/ArviZPythonPlots.jl/src/xarray.jl:9
[12] Py
@ ~/work/ArviZPythonPlots.jl/ArviZPythonPlots.jl/src/xarray.jl:1 [inlined]
[13] topytype
@ ~/work/ArviZPythonPlots.jl/ArviZPythonPlots.jl/src/utils.jl:55 [inlined]
[14] map
@ ./tuple.jl:360 [inlined]
[15] map
@ ./tuple.jl:361 [inlined]
[16] map(f::typeof(ArviZPythonPlots.topytype), t::Tuple{InferenceObjects.Dataset{(:y,), @NamedTuple{y::Float64}, 3, @NamedTuple{y::Array{Float64, 3}}, DimensionalData.DimStack{(:y,), @NamedTuple{y::Float64}, 3, @NamedTuple{y::Array{Float64, 3}}, Tuple{DimensionalData.Dimensions.Dim{:y_dim_0, DimensionalData.Dimensions.Lookups.Sampled{Int64, Vector{Int64}, DimensionalData.Dimensions.Lookups.ForwardOrdered, DimensionalData.Dimensions.Lookups.Irregular{Tuple{Nothing, Nothing}}, DimensionalData.Dimensions.Lookups.Points, DimensionalData.Dimensions.Lookups.
|
|
Documentation:
../../../.julia/packages/Documenter/xvqbW/src/utilities/utilities.jl#L47
failed to run `@example` block in docs/src/examples.md:307-327
```@example
using ArviZPythonPlots, ArviZExampleData
use_style("arviz-darkgrid")
data = load_example_data("centered_eight")
## Combine different posterior draws from different chains
obs = data.posterior_predictive.obs
size_obs = size(obs)
y_hat = reshape(obs, prod(size_obs[1:2]), size_obs[3:end]...)
plot_kde(
y_hat;
label="Estimated Effect\n of SAT Prep",
rug=true,
plot_kwargs=Dict("linewidth" => 2, "color" => "black"),
rug_kwargs=Dict("color" => "black"),
)
gcf()
```
exception =
Python: ValueError: NoneType copy mode not allowed.
Python stacktrace:
[1] __array__
@ ~/.julia/packages/PythonCall/wkBj7/src/JlWrap/array.jl:371
[2] to_numpy
@ ~/.julia/packages/PythonCall/wkBj7/src/JlWrap/array.jl:374
Stacktrace:
[1] pythrow()
@ PythonCall.Core ~/.julia/packages/PythonCall/wkBj7/src/Core/err.jl:77
[2] errcheck
@ ~/.julia/packages/PythonCall/wkBj7/src/Core/err.jl:10 [inlined]
[3] pycallargs(f::Py)
@ PythonCall.Core ~/.julia/packages/PythonCall/wkBj7/src/Core/builtins.jl:193
[4] #pycall#26
@ ~/.julia/packages/PythonCall/wkBj7/src/Core/builtins.jl:217 [inlined]
[5] pycall
@ ~/.julia/packages/PythonCall/wkBj7/src/Core/builtins.jl:203 [inlined]
[6] Py
@ ~/.julia/packages/PythonCall/wkBj7/src/Core/Py.jl:363 [inlined]
[7] topytype(x::Base.ReshapedArray{Float64, 2, DimensionalData.DimArray{Float64, 3, Tuple{DimensionalData.Dimensions.Dim{:school, DimensionalData.Dimensions.Lookups.Categorical{String, Vector{String}, DimensionalData.Dimensions.Lookups.Unordered, DimensionalData.Dimensions.Lookups.NoMetadata}}, DimensionalData.Dimensions.Dim{:draw, DimensionalData.Dimensions.Lookups.Sampled{Int64, Vector{Int64}, DimensionalData.Dimensions.Lookups.ForwardOrdered, DimensionalData.Dimensions.Lookups.Irregular{Tuple{Nothing, Nothing}}, DimensionalData.Dimensions.Lookups.Points, DimensionalData.Dimensions.Lookups.NoMetadata}}, DimensionalData.Dimensions.Dim{:chain, DimensionalData.Dimensions.Lookups.Sampled{Int64, Vector{Int64}, DimensionalData.Dimensions.Lookups.ForwardOrdered, DimensionalData.Dimensions.Lookups.Irregular{Tuple{Nothing, Nothing}}, DimensionalData.Dimensions.Lookups.Points, DimensionalData.Dimensions.Lookups.NoMetadata}}}, Tuple{}, Array{Float64, 3}, Symbol, DimensionalData.Dimensions.Lookups.NoMetadata}, Tuple{}})
@ ArviZPythonPlots ~/work/ArviZPythonPlots.jl/ArviZPythonPlots.jl/src/utils.jl:49
[8] iterate
@ ./generator.jl:48 [inlined]
[9] plot_kde(args::Base.ReshapedArray{Float64, 2, DimensionalData.DimArray{Float64, 3, Tuple{DimensionalData.Dimensions.Dim{:school, DimensionalData.Dimensions.Lookups.Categorical{String, Vector{String}, DimensionalData.Dimensions.Lookups.Unordered, DimensionalData.Dimensions.Lookups.NoMetadata}}, DimensionalData.Dimensions.Dim{:draw, DimensionalData.Dimensions.Lookups.Sampled{Int64, Vector{Int64}, DimensionalData.Dimensions.Lookups.ForwardOrdered, DimensionalData.Dimensions.Lookups.Irregular{Tuple{Nothing, Nothing}}, DimensionalData.Dimensions.Lookups.Points, DimensionalData.Dimensions.Lookups.NoMetadata}}, DimensionalData.Dimensions.Dim{:chain, DimensionalData.Dimensions.Lookups.Sampled{Int64, Vector{Int64}, DimensionalData.Dimensions.Lookups.ForwardOrdered, DimensionalData.Dimensions.Lookups.Irregular{Tuple{Nothing, Nothing}}, DimensionalData.Dimensions.Lookups.Points, DimensionalData.Dimensions.Lookups.NoMetadata}}}, Tuple{}, Array{Float64, 3}, Symbol, DimensionalData.Dimensions.Lookups.NoMetadata}, Tuple{}}; kwargs::@kwargs{label::String, rug::Bool, plot_kwargs::Dict{String, Any}, rug_kwargs::Dict{String, String}})
@ ArviZPythonPlots ~/work/ArviZPythonPlots.jl/ArviZPythonPlots.jl/src/plots.jl:3
[10] top-level scope
@ examples.md:319
[11] eval(m::Module, e::Any)
@ Core ./boot.jl:489
[12] #61
@ ~/.julia/packages/Documenter/xvqbW/src/expander_pipeline.jl:879 [inlined]
[13] cd(f::Documenter.var"#61#
|
|
Documentation:
../../../.julia/packages/Documenter/xvqbW/src/docchecks.jl#L250
linkcheck 'https://github.com/cjdoris/PythonCall.jl' status: 301, redirects to 'https://github.com/JuliaPy/PythonCall.jl'
|