|
| 1 | +from typing import ( |
| 2 | + Literal as L, |
| 3 | + List, |
| 4 | + Iterable, |
| 5 | + overload, |
| 6 | + TypeVar, |
| 7 | + Any, |
| 8 | + SupportsIndex, |
| 9 | + SupportsInt, |
| 10 | + Tuple, |
| 11 | +) |
| 12 | + |
| 13 | +from numpy import ( |
| 14 | + generic, |
| 15 | + floating, |
| 16 | + complexfloating, |
| 17 | + int32, |
| 18 | + float64, |
| 19 | + complex128, |
| 20 | +) |
| 21 | + |
| 22 | +from numpy.typing import ( |
| 23 | + NDArray, |
| 24 | + ArrayLike, |
| 25 | + _ArrayLikeInt_co, |
| 26 | + _ArrayLikeFloat_co, |
| 27 | + _ArrayLikeComplex_co, |
| 28 | + _ArrayLikeTD64_co, |
| 29 | + _ArrayLikeObject_co, |
| 30 | +) |
| 31 | + |
| 32 | +_T = TypeVar("_T") |
| 33 | +_ArrayType = TypeVar("_ArrayType", bound=NDArray[Any]) |
| 34 | + |
| 35 | +_2Tuple = Tuple[_T, _T] |
| 36 | +_ModeKind = L["reduced", "complete", "r", "raw"] |
| 37 | + |
| 38 | +__all__: List[str] |
| 39 | + |
| 40 | +@overload |
| 41 | +def tensorsolve( |
| 42 | + a: _ArrayLikeInt_co, |
| 43 | + b: _ArrayLikeInt_co, |
| 44 | + axes: None | Iterable[int] =..., |
| 45 | +) -> NDArray[float64]: ... |
| 46 | +@overload |
| 47 | +def tensorsolve( |
| 48 | + a: _ArrayLikeFloat_co, |
| 49 | + b: _ArrayLikeFloat_co, |
| 50 | + axes: None | Iterable[int] =..., |
| 51 | +) -> NDArray[floating[Any]]: ... |
| 52 | +@overload |
| 53 | +def tensorsolve( |
| 54 | + a: _ArrayLikeComplex_co, |
| 55 | + b: _ArrayLikeComplex_co, |
| 56 | + axes: None | Iterable[int] =..., |
| 57 | +) -> NDArray[complexfloating[Any, Any]]: ... |
| 58 | + |
| 59 | +@overload |
| 60 | +def solve( |
| 61 | + a: _ArrayLikeInt_co, |
| 62 | + b: _ArrayLikeInt_co, |
| 63 | +) -> NDArray[float64]: ... |
| 64 | +@overload |
| 65 | +def solve( |
| 66 | + a: _ArrayLikeFloat_co, |
| 67 | + b: _ArrayLikeFloat_co, |
| 68 | +) -> NDArray[floating[Any]]: ... |
| 69 | +@overload |
| 70 | +def solve( |
| 71 | + a: _ArrayLikeComplex_co, |
| 72 | + b: _ArrayLikeComplex_co, |
| 73 | +) -> NDArray[complexfloating[Any, Any]]: ... |
| 74 | + |
| 75 | +@overload |
| 76 | +def tensorinv( |
| 77 | + a: _ArrayLikeInt_co, |
| 78 | + ind: int = ..., |
| 79 | +) -> NDArray[float64]: ... |
| 80 | +@overload |
| 81 | +def tensorinv( |
| 82 | + a: _ArrayLikeFloat_co, |
| 83 | + ind: int = ..., |
| 84 | +) -> NDArray[floating[Any]]: ... |
| 85 | +@overload |
| 86 | +def tensorinv( |
| 87 | + a: _ArrayLikeComplex_co, |
| 88 | + ind: int = ..., |
| 89 | +) -> NDArray[complexfloating[Any, Any]]: ... |
| 90 | + |
| 91 | +@overload |
| 92 | +def inv(a: _ArrayLikeInt_co) -> NDArray[float64]: ... |
| 93 | +@overload |
| 94 | +def inv(a: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ... |
| 95 | +@overload |
| 96 | +def inv(a: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ... |
| 97 | + |
| 98 | +# TODO: The supported input and output dtypes are dependant on the value of `n`. |
| 99 | +# For example: `n < 0` always casts integer types to float64 |
| 100 | +def matrix_power( |
| 101 | + a: _ArrayLikeComplex_co | _ArrayLikeObject_co, |
| 102 | + n: SupportsIndex, |
| 103 | +) -> NDArray[Any]: ... |
| 104 | + |
| 105 | +@overload |
| 106 | +def cholesky(a: _ArrayLikeInt_co) -> NDArray[float64]: ... |
| 107 | +@overload |
| 108 | +def cholesky(a: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ... |
| 109 | +@overload |
| 110 | +def cholesky(a: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ... |
| 111 | + |
| 112 | +@overload |
| 113 | +def qr(a: _ArrayLikeInt_co, mode: _ModeKind = ...) -> _2Tuple[NDArray[float64]]: ... |
| 114 | +@overload |
| 115 | +def qr(a: _ArrayLikeFloat_co, mode: _ModeKind = ...) -> _2Tuple[NDArray[floating[Any]]]: ... |
| 116 | +@overload |
| 117 | +def qr(a: _ArrayLikeComplex_co, mode: _ModeKind = ...) -> _2Tuple[NDArray[complexfloating[Any, Any]]]: ... |
| 118 | + |
| 119 | +@overload |
| 120 | +def eigvals(a: _ArrayLikeInt_co) -> NDArray[float64] | NDArray[complex128]: ... |
| 121 | +@overload |
| 122 | +def eigvals(a: _ArrayLikeFloat_co) -> NDArray[floating[Any]] | NDArray[complexfloating[Any, Any]]: ... |
| 123 | +@overload |
| 124 | +def eigvals(a: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ... |
| 125 | + |
| 126 | +@overload |
| 127 | +def eigvalsh(a: _ArrayLikeInt_co, UPLO: L["L", "U", "l", "u"] = ...) -> NDArray[float64]: ... |
| 128 | +@overload |
| 129 | +def eigvalsh(a: _ArrayLikeComplex_co, UPLO: L["L", "U", "l", "u"] = ...) -> NDArray[floating[Any]]: ... |
| 130 | + |
| 131 | +@overload |
| 132 | +def eig(a: _ArrayLikeInt_co) -> _2Tuple[NDArray[float64]] | _2Tuple[NDArray[complex128]]: ... |
| 133 | +@overload |
| 134 | +def eig(a: _ArrayLikeFloat_co) -> _2Tuple[NDArray[floating[Any]]] | _2Tuple[NDArray[complexfloating[Any, Any]]]: ... |
| 135 | +@overload |
| 136 | +def eig(a: _ArrayLikeComplex_co) -> _2Tuple[NDArray[complexfloating[Any, Any]]]: ... |
| 137 | + |
| 138 | +@overload |
| 139 | +def eigh( |
| 140 | + a: _ArrayLikeInt_co, |
| 141 | + UPLO: L["L", "U", "l", "u"] = ..., |
| 142 | +) -> Tuple[NDArray[float64], NDArray[float64]]: ... |
| 143 | +@overload |
| 144 | +def eigh( |
| 145 | + a: _ArrayLikeFloat_co, |
| 146 | + UPLO: L["L", "U", "l", "u"] = ..., |
| 147 | +) -> Tuple[NDArray[floating[Any]], NDArray[floating[Any]]]: ... |
| 148 | +@overload |
| 149 | +def eigh( |
| 150 | + a: _ArrayLikeComplex_co, |
| 151 | + UPLO: L["L", "U", "l", "u"] = ..., |
| 152 | +) -> Tuple[NDArray[floating[Any]], NDArray[complexfloating[Any, Any]]]: ... |
| 153 | + |
| 154 | +@overload |
| 155 | +def svd( |
| 156 | + a: _ArrayLikeInt_co, |
| 157 | + full_matrices: bool = ..., |
| 158 | + compute_uv: L[True] = ..., |
| 159 | + hermitian: bool = ..., |
| 160 | +) -> Tuple[ |
| 161 | + NDArray[float64], |
| 162 | + NDArray[float64], |
| 163 | + NDArray[float64], |
| 164 | +]: ... |
| 165 | +@overload |
| 166 | +def svd( |
| 167 | + a: _ArrayLikeFloat_co, |
| 168 | + full_matrices: bool = ..., |
| 169 | + compute_uv: L[True] = ..., |
| 170 | + hermitian: bool = ..., |
| 171 | +) -> Tuple[ |
| 172 | + NDArray[floating[Any]], |
| 173 | + NDArray[floating[Any]], |
| 174 | + NDArray[floating[Any]], |
| 175 | +]: ... |
| 176 | +@overload |
| 177 | +def svd( |
| 178 | + a: _ArrayLikeComplex_co, |
| 179 | + full_matrices: bool = ..., |
| 180 | + compute_uv: L[True] = ..., |
| 181 | + hermitian: bool = ..., |
| 182 | +) -> Tuple[ |
| 183 | + NDArray[complexfloating[Any, Any]], |
| 184 | + NDArray[floating[Any]], |
| 185 | + NDArray[complexfloating[Any, Any]], |
| 186 | +]: ... |
| 187 | +@overload |
| 188 | +def svd( |
| 189 | + a: _ArrayLikeInt_co, |
| 190 | + full_matrices: bool = ..., |
| 191 | + compute_uv: L[False] = ..., |
| 192 | + hermitian: bool = ..., |
| 193 | +) -> NDArray[float64]: ... |
| 194 | +@overload |
| 195 | +def svd( |
| 196 | + a: _ArrayLikeComplex_co, |
| 197 | + full_matrices: bool = ..., |
| 198 | + compute_uv: L[False] = ..., |
| 199 | + hermitian: bool = ..., |
| 200 | +) -> NDArray[floating[Any]]: ... |
| 201 | + |
| 202 | +# TODO: Returns a scalar for 2D arrays and |
| 203 | +# a `(x.ndim - 2)`` dimensionl array otherwise |
| 204 | +def cond(x: _ArrayLikeComplex_co, p: None | float | L["fro", "nuc"] = ...) -> Any: ... |
| 205 | + |
| 206 | +# TODO: Returns `int` for <2D arrays and `intp` otherwise |
| 207 | +def matrix_rank( |
| 208 | + A: _ArrayLikeComplex_co, |
| 209 | + tol: None | _ArrayLikeFloat_co = ..., |
| 210 | + hermitian: bool = ..., |
| 211 | +) -> Any: ... |
| 212 | + |
| 213 | +@overload |
| 214 | +def pinv( |
| 215 | + a: _ArrayLikeInt_co, |
| 216 | + rcond: _ArrayLikeFloat_co = ..., |
| 217 | + hermitian: bool = ..., |
| 218 | +) -> NDArray[float64]: ... |
| 219 | +@overload |
| 220 | +def pinv( |
| 221 | + a: _ArrayLikeFloat_co, |
| 222 | + rcond: _ArrayLikeFloat_co = ..., |
| 223 | + hermitian: bool = ..., |
| 224 | +) -> NDArray[floating[Any]]: ... |
| 225 | +@overload |
| 226 | +def pinv( |
| 227 | + a: _ArrayLikeComplex_co, |
| 228 | + rcond: _ArrayLikeFloat_co = ..., |
| 229 | + hermitian: bool = ..., |
| 230 | +) -> NDArray[complexfloating[Any, Any]]: ... |
| 231 | + |
| 232 | +# TODO: Returns a 2-tuple of scalars for 2D arrays and |
| 233 | +# a 2-tuple of `(a.ndim - 2)`` dimensionl arrays otherwise |
| 234 | +def slogdet(a: _ArrayLikeComplex_co) -> _2Tuple[Any]: ... |
| 235 | + |
| 236 | +# TODO: Returns a 2-tuple of scalars for 2D arrays and |
| 237 | +# a 2-tuple of `(a.ndim - 2)`` dimensionl arrays otherwise |
| 238 | +def det(a: _ArrayLikeComplex_co) -> Any: ... |
| 239 | + |
| 240 | +@overload |
| 241 | +def lstsq(a: _ArrayLikeInt_co, b: _ArrayLikeInt_co, rcond: None | float = ...) -> Tuple[ |
| 242 | + NDArray[float64], |
| 243 | + NDArray[float64], |
| 244 | + int32, |
| 245 | + NDArray[float64], |
| 246 | +]: ... |
| 247 | +@overload |
| 248 | +def lstsq(a: _ArrayLikeFloat_co, b: _ArrayLikeFloat_co, rcond: None | float = ...) -> Tuple[ |
| 249 | + NDArray[floating[Any]], |
| 250 | + NDArray[floating[Any]], |
| 251 | + int32, |
| 252 | + NDArray[floating[Any]], |
| 253 | +]: ... |
| 254 | +@overload |
| 255 | +def lstsq(a: _ArrayLikeComplex_co, b: _ArrayLikeComplex_co, rcond: None | float = ...) -> Tuple[ |
| 256 | + NDArray[complexfloating[Any, Any]], |
| 257 | + NDArray[floating[Any]], |
| 258 | + int32, |
| 259 | + NDArray[floating[Any]], |
| 260 | +]: ... |
| 261 | + |
| 262 | +@overload |
| 263 | +def norm( |
| 264 | + x: ArrayLike, |
| 265 | + ord: None | float | L["fro", "nuc"] = ..., |
| 266 | + axis: None = ..., |
| 267 | + keepdims: bool = ..., |
| 268 | +) -> floating[Any]: ... |
| 269 | +@overload |
| 270 | +def norm( |
| 271 | + x: ArrayLike, |
| 272 | + ord: None | float | L["fro", "nuc"] = ..., |
| 273 | + axis: SupportsInt | SupportsIndex | Tuple[int, ...] = ..., |
| 274 | + keepdims: bool = ..., |
| 275 | +) -> Any: ... |
| 276 | + |
| 277 | +# TODO: Returns a scalar or array |
| 278 | +def multi_dot( |
| 279 | + arrays: Iterable[_ArrayLikeComplex_co | _ArrayLikeObject_co | _ArrayLikeTD64_co], |
| 280 | + *, |
| 281 | + out: None | NDArray[Any] = ..., |
| 282 | +) -> Any: ... |
0 commit comments