@@ -1273,21 +1273,21 @@ def nanpercentile(
12731273 method : str, optional
12741274 This parameter specifies the method to use for estimating the
12751275 percentile. There are many different methods, some unique to NumPy.
1276- See the notes for explanation. The options aligning with the R types
1277- and the H&F paper are:
1278-
1279- * (H&F 1): 'inverted_cdf'
1280- * (H&F 2): 'averaged_inverted_cdf'
1281- * (H&F 3): 'closest_observation'
1282- * (H&F 4): 'interpolated_inverted_cdf'
1283- * (H&F 5): 'hazen'
1284- * (H&F 6): 'weibull'
1285- * (H&F 7): 'linear' (default)
1286- * (H&F 8): 'median_unbiased'
1287- * (H&F 9): 'normal_unbiased'
1288-
1289- Mainly for compatibility reasons, NumPy also supports the following
1290- options which appear to be unique to NumPy :
1276+ See the notes for explanation. The options sorted by their R type
1277+ as summarized in the H&F paper [1]_ are:
1278+
1279+ 1. 'inverted_cdf'
1280+ 2. 'averaged_inverted_cdf'
1281+ 3. 'closest_observation'
1282+ 4. 'interpolated_inverted_cdf'
1283+ 5. 'hazen'
1284+ 6. 'weibull'
1285+ 7. 'linear' (default)
1286+ 8. 'median_unbiased'
1287+ 9. 'normal_unbiased'
1288+
1289+ The first three methods are discontiuous. NumPy further defines the
1290+ following discontinuous variations of the default 'linear' (7.) option :
12911291
12921292 * 'lower'
12931293 * 'higher',
@@ -1365,6 +1365,12 @@ def nanpercentile(
13651365 array([7., 2.])
13661366 >>> assert not np.all(a==b)
13671367
1368+ References
1369+ ----------
1370+ .. [1] R. J. Hyndman and Y. Fan,
1371+ "Sample quantiles in statistical packages,"
1372+ The American Statistician, 50(4), pp. 361-365, 1996
1373+
13681374 """
13691375 if interpolation is not None :
13701376 method = function_base ._check_interpolation_as_method (
@@ -1427,21 +1433,21 @@ def nanquantile(
14271433 method : str, optional
14281434 This parameter specifies the method to use for estimating the
14291435 quantile. There are many different methods, some unique to NumPy.
1430- See the notes for explanation. The options aligning with the R types
1431- and the H&F paper are:
1432-
1433- * (H&F 1): 'inverted_cdf'
1434- * (H&F 2): 'averaged_inverted_cdf'
1435- * (H&F 3): 'closest_observation'
1436- * (H&F 4): 'interpolated_inverted_cdf'
1437- * (H&F 5): 'hazen'
1438- * (H&F 6): 'weibull'
1439- * (H&F 7): 'linear' (default)
1440- * (H&F 8): 'median_unbiased'
1441- * (H&F 9): 'normal_unbiased'
1442-
1443- Mainly for compatibility reasons, NumPy also supports the following
1444- options which appear to be unique to NumPy :
1436+ See the notes for explanation. The options sorted by their R type
1437+ as summarized in the H&F paper [1]_ are:
1438+
1439+ 1. 'inverted_cdf'
1440+ 2. 'averaged_inverted_cdf'
1441+ 3. 'closest_observation'
1442+ 4. 'interpolated_inverted_cdf'
1443+ 5. 'hazen'
1444+ 6. 'weibull'
1445+ 7. 'linear' (default)
1446+ 8. 'median_unbiased'
1447+ 9. 'normal_unbiased'
1448+
1449+ The first three methods are discontiuous. NumPy further defines the
1450+ following discontinuous variations of the default 'linear' (7.) option :
14451451
14461452 * 'lower'
14471453 * 'higher',
@@ -1518,6 +1524,12 @@ def nanquantile(
15181524 array([7., 2.])
15191525 >>> assert not np.all(a==b)
15201526
1527+ References
1528+ ----------
1529+ .. [1] R. J. Hyndman and Y. Fan,
1530+ "Sample quantiles in statistical packages,"
1531+ The American Statistician, 50(4), pp. 361-365, 1996
1532+
15211533 """
15221534 if interpolation is not None :
15231535 method = function_base ._check_interpolation_as_method (
0 commit comments