@@ -4084,7 +4084,7 @@ def percentile(a,
40844084 array([7., 2.])
40854085 >>> assert not np.all(a == b)
40864086
4087- The different types of interpolation can be visualized graphically:
4087+ The different methods can be visualized graphically:
40884088
40894089 .. plot::
40904090
@@ -4094,20 +4094,25 @@ def percentile(a,
40944094 p = np.linspace(0, 100, 6001)
40954095 ax = plt.gca()
40964096 lines = [
4097- ('linear', None),
4098- ('higher', '--'),
4099- ('lower', '--'),
4100- ('nearest', '-.'),
4101- ('midpoint', '-.'),
4102- ]
4103- for interpolation, style in lines:
4097+ ('linear', '-', 'C0'),
4098+ ('inverted_cdf', ':', 'C1'),
4099+ # Almost the same as `inverted_cdf`:
4100+ ('averaged_inverted_cdf', '-.', 'C1'),
4101+ ('closest_observation', ':', 'C2'),
4102+ ('interpolated_inverted_cdf', '--', 'C1'),
4103+ ('hazen', '--', 'C3'),
4104+ ('weibull', '-.', 'C4'),
4105+ ('median_unbiased', '--', 'C5'),
4106+ ('normal_unbiased', '-.', 'C6'),
4107+ ]
4108+ for method, style, color in lines:
41044109 ax.plot(
4105- p, np.percentile(a, p, interpolation=interpolation ),
4106- label=interpolation , linestyle=style)
4110+ p, np.percentile(a, p, method=method ),
4111+ label=method , linestyle=style, color=color )
41074112 ax.set(
4108- title='Result for the data: ' + str(a),
4113+ title='Percentiles for different methods and data: ' + str(a),
41094114 xlabel='Percentile',
4110- ylabel='List item returned ',
4115+ ylabel='Estimated percentile value ',
41114116 yticks=a)
41124117 ax.legend()
41134118 plt.show()
@@ -4347,6 +4352,8 @@ def quantile(a,
43474352 array([7., 2.])
43484353 >>> assert not np.all(a == b)
43494354
4355+ See also `numpy.percentile` for a visualization of most methods.
4356+
43504357 References
43514358 ----------
43524359 .. [1] R. J. Hyndman and Y. Fan,
0 commit comments