|
1 | | -from typing import List |
| 1 | +from typing import ( |
| 2 | + Literal as L, |
| 3 | + Any, |
| 4 | + List, |
| 5 | + Union, |
| 6 | + TypeVar, |
| 7 | + Tuple, |
| 8 | + overload, |
| 9 | + SupportsIndex, |
| 10 | +) |
| 11 | + |
| 12 | +from numpy import ( |
| 13 | + dtype, |
| 14 | + generic, |
| 15 | + number, |
| 16 | + bool_, |
| 17 | + ushort, |
| 18 | + ubyte, |
| 19 | + uintc, |
| 20 | + uint, |
| 21 | + ulonglong, |
| 22 | + short, |
| 23 | + int8, |
| 24 | + byte, |
| 25 | + intc, |
| 26 | + int_, |
| 27 | + intp, |
| 28 | + longlong, |
| 29 | + half, |
| 30 | + single, |
| 31 | + double, |
| 32 | + longdouble, |
| 33 | + csingle, |
| 34 | + cdouble, |
| 35 | + clongdouble, |
| 36 | + timedelta64, |
| 37 | + datetime64, |
| 38 | + object_, |
| 39 | + str_, |
| 40 | + bytes_, |
| 41 | + void, |
| 42 | +) |
| 43 | + |
| 44 | +from numpy.typing import ( |
| 45 | + ArrayLike, |
| 46 | + NDArray, |
| 47 | + _FiniteNestedSequence, |
| 48 | + _SupportsArray, |
| 49 | + _ArrayLikeBool_co, |
| 50 | + _ArrayLikeDT64_co, |
| 51 | + _ArrayLikeTD64_co, |
| 52 | + _ArrayLikeObject_co, |
| 53 | + _ArrayLikeNumber_co, |
| 54 | +) |
| 55 | + |
| 56 | +_SCT = TypeVar("_SCT", bound=generic) |
| 57 | +_NumberType = TypeVar("_NumberType", bound=number[Any]) |
| 58 | + |
| 59 | +# Explicitly set all allowed values to prevent accidental castings to |
| 60 | +# abstract dtypes (their common super-type). |
| 61 | +# |
| 62 | +# Only relevant if two or more arguments are parametrized, (e.g. `setdiff1d`) |
| 63 | +# which could result in, for example, `int64` and `float64`producing a |
| 64 | +# `number[_64Bit]` array |
| 65 | +_SCTNoCast = TypeVar( |
| 66 | + "_SCTNoCast", |
| 67 | + bool_, |
| 68 | + ushort, |
| 69 | + ubyte, |
| 70 | + uintc, |
| 71 | + uint, |
| 72 | + ulonglong, |
| 73 | + short, |
| 74 | + byte, |
| 75 | + intc, |
| 76 | + int_, |
| 77 | + longlong, |
| 78 | + half, |
| 79 | + single, |
| 80 | + double, |
| 81 | + longdouble, |
| 82 | + csingle, |
| 83 | + cdouble, |
| 84 | + clongdouble, |
| 85 | + timedelta64, |
| 86 | + datetime64, |
| 87 | + object_, |
| 88 | + str_, |
| 89 | + bytes_, |
| 90 | + void, |
| 91 | +) |
| 92 | + |
| 93 | +_ArrayLike = _FiniteNestedSequence[_SupportsArray[dtype[_SCT]]] |
2 | 94 |
|
3 | 95 | __all__: List[str] |
4 | 96 |
|
5 | | -def ediff1d(ary, to_end=..., to_begin=...): ... |
6 | | -def unique(ar, return_index=..., return_inverse=..., return_counts=..., axis=...): ... |
7 | | -def intersect1d(ar1, ar2, assume_unique=..., return_indices=...): ... |
8 | | -def setxor1d(ar1, ar2, assume_unique=...): ... |
9 | | -def in1d(ar1, ar2, assume_unique=..., invert=...): ... |
10 | | -def isin(element, test_elements, assume_unique=..., invert=...): ... |
11 | | -def union1d(ar1, ar2): ... |
12 | | -def setdiff1d(ar1, ar2, assume_unique=...): ... |
| 97 | +@overload |
| 98 | +def ediff1d( |
| 99 | + ary: _ArrayLikeBool_co, |
| 100 | + to_end: None | ArrayLike = ..., |
| 101 | + to_begin: None | ArrayLike = ..., |
| 102 | +) -> NDArray[int8]: ... |
| 103 | +@overload |
| 104 | +def ediff1d( |
| 105 | + ary: _ArrayLike[_NumberType], |
| 106 | + to_end: None | ArrayLike = ..., |
| 107 | + to_begin: None | ArrayLike = ..., |
| 108 | +) -> NDArray[_NumberType]: ... |
| 109 | +@overload |
| 110 | +def ediff1d( |
| 111 | + ary: _ArrayLikeNumber_co, |
| 112 | + to_end: None | ArrayLike = ..., |
| 113 | + to_begin: None | ArrayLike = ..., |
| 114 | +) -> NDArray[Any]: ... |
| 115 | +@overload |
| 116 | +def ediff1d( |
| 117 | + ary: _ArrayLikeDT64_co | _ArrayLikeTD64_co, |
| 118 | + to_end: None | ArrayLike = ..., |
| 119 | + to_begin: None | ArrayLike = ..., |
| 120 | +) -> NDArray[timedelta64]: ... |
| 121 | +@overload |
| 122 | +def ediff1d( |
| 123 | + ary: _ArrayLikeObject_co, |
| 124 | + to_end: None | ArrayLike = ..., |
| 125 | + to_begin: None | ArrayLike = ..., |
| 126 | +) -> NDArray[object_]: ... |
| 127 | + |
| 128 | +@overload |
| 129 | +def unique( |
| 130 | + ar: _ArrayLike[_SCT], |
| 131 | + return_index: L[False] = ..., |
| 132 | + return_inverse: L[False] = ..., |
| 133 | + return_counts: L[False] = ..., |
| 134 | + axis: None | SupportsIndex = ..., |
| 135 | +) -> NDArray[_SCT]: ... |
| 136 | +@overload |
| 137 | +def unique( |
| 138 | + ar: ArrayLike, |
| 139 | + return_index: L[False] = ..., |
| 140 | + return_inverse: L[False] = ..., |
| 141 | + return_counts: L[False] = ..., |
| 142 | + axis: None | SupportsIndex = ..., |
| 143 | +) -> NDArray[Any]: ... |
| 144 | +@overload |
| 145 | +def unique( |
| 146 | + ar: _ArrayLike[_SCT], |
| 147 | + return_index: L[True] = ..., |
| 148 | + return_inverse: L[False] = ..., |
| 149 | + return_counts: L[False] = ..., |
| 150 | + axis: None | SupportsIndex = ..., |
| 151 | +) -> Tuple[NDArray[_SCT], NDArray[intp]]: ... |
| 152 | +@overload |
| 153 | +def unique( |
| 154 | + ar: ArrayLike, |
| 155 | + return_index: L[True] = ..., |
| 156 | + return_inverse: L[False] = ..., |
| 157 | + return_counts: L[False] = ..., |
| 158 | + axis: None | SupportsIndex = ..., |
| 159 | +) -> Tuple[NDArray[Any], NDArray[intp]]: ... |
| 160 | +@overload |
| 161 | +def unique( |
| 162 | + ar: _ArrayLike[_SCT], |
| 163 | + return_index: L[False] = ..., |
| 164 | + return_inverse: L[True] = ..., |
| 165 | + return_counts: L[False] = ..., |
| 166 | + axis: None | SupportsIndex = ..., |
| 167 | +) -> Tuple[NDArray[_SCT], NDArray[intp]]: ... |
| 168 | +@overload |
| 169 | +def unique( |
| 170 | + ar: ArrayLike, |
| 171 | + return_index: L[False] = ..., |
| 172 | + return_inverse: L[True] = ..., |
| 173 | + return_counts: L[False] = ..., |
| 174 | + axis: None | SupportsIndex = ..., |
| 175 | +) -> Tuple[NDArray[Any], NDArray[intp]]: ... |
| 176 | +@overload |
| 177 | +def unique( |
| 178 | + ar: _ArrayLike[_SCT], |
| 179 | + return_index: L[False] = ..., |
| 180 | + return_inverse: L[False] = ..., |
| 181 | + return_counts: L[True] = ..., |
| 182 | + axis: None | SupportsIndex = ..., |
| 183 | +) -> Tuple[NDArray[_SCT], NDArray[intp]]: ... |
| 184 | +@overload |
| 185 | +def unique( |
| 186 | + ar: ArrayLike, |
| 187 | + return_index: L[False] = ..., |
| 188 | + return_inverse: L[False] = ..., |
| 189 | + return_counts: L[True] = ..., |
| 190 | + axis: None | SupportsIndex = ..., |
| 191 | +) -> Tuple[NDArray[Any], NDArray[intp]]: ... |
| 192 | +@overload |
| 193 | +def unique( |
| 194 | + ar: _ArrayLike[_SCT], |
| 195 | + return_index: L[True] = ..., |
| 196 | + return_inverse: L[True] = ..., |
| 197 | + return_counts: L[False] = ..., |
| 198 | + axis: None | SupportsIndex = ..., |
| 199 | +) -> Tuple[NDArray[_SCT], NDArray[intp], NDArray[intp]]: ... |
| 200 | +@overload |
| 201 | +def unique( |
| 202 | + ar: ArrayLike, |
| 203 | + return_index: L[True] = ..., |
| 204 | + return_inverse: L[True] = ..., |
| 205 | + return_counts: L[False] = ..., |
| 206 | + axis: None | SupportsIndex = ..., |
| 207 | +) -> Tuple[NDArray[Any], NDArray[intp], NDArray[intp]]: ... |
| 208 | +@overload |
| 209 | +def unique( |
| 210 | + ar: _ArrayLike[_SCT], |
| 211 | + return_index: L[True] = ..., |
| 212 | + return_inverse: L[False] = ..., |
| 213 | + return_counts: L[True] = ..., |
| 214 | + axis: None | SupportsIndex = ..., |
| 215 | +) -> Tuple[NDArray[_SCT], NDArray[intp], NDArray[intp]]: ... |
| 216 | +@overload |
| 217 | +def unique( |
| 218 | + ar: ArrayLike, |
| 219 | + return_index: L[True] = ..., |
| 220 | + return_inverse: L[False] = ..., |
| 221 | + return_counts: L[True] = ..., |
| 222 | + axis: None | SupportsIndex = ..., |
| 223 | +) -> Tuple[NDArray[Any], NDArray[intp], NDArray[intp]]: ... |
| 224 | +@overload |
| 225 | +def unique( |
| 226 | + ar: _ArrayLike[_SCT], |
| 227 | + return_index: L[False] = ..., |
| 228 | + return_inverse: L[True] = ..., |
| 229 | + return_counts: L[True] = ..., |
| 230 | + axis: None | SupportsIndex = ..., |
| 231 | +) -> Tuple[NDArray[_SCT], NDArray[intp], NDArray[intp]]: ... |
| 232 | +@overload |
| 233 | +def unique( |
| 234 | + ar: ArrayLike, |
| 235 | + return_index: L[False] = ..., |
| 236 | + return_inverse: L[True] = ..., |
| 237 | + return_counts: L[True] = ..., |
| 238 | + axis: None | SupportsIndex = ..., |
| 239 | +) -> Tuple[NDArray[Any], NDArray[intp], NDArray[intp]]: ... |
| 240 | +@overload |
| 241 | +def unique( |
| 242 | + ar: _ArrayLike[_SCT], |
| 243 | + return_index: L[True] = ..., |
| 244 | + return_inverse: L[True] = ..., |
| 245 | + return_counts: L[True] = ..., |
| 246 | + axis: None | SupportsIndex = ..., |
| 247 | +) -> Tuple[NDArray[_SCT], NDArray[intp], NDArray[intp], NDArray[intp]]: ... |
| 248 | +@overload |
| 249 | +def unique( |
| 250 | + ar: ArrayLike, |
| 251 | + return_index: L[True] = ..., |
| 252 | + return_inverse: L[True] = ..., |
| 253 | + return_counts: L[True] = ..., |
| 254 | + axis: None | SupportsIndex = ..., |
| 255 | +) -> Tuple[NDArray[Any], NDArray[intp], NDArray[intp], NDArray[intp]]: ... |
| 256 | + |
| 257 | +@overload |
| 258 | +def intersect1d( |
| 259 | + ar1: _ArrayLike[_SCTNoCast], |
| 260 | + ar2: _ArrayLike[_SCTNoCast], |
| 261 | + assume_unique: bool = ..., |
| 262 | + return_indices: L[False] = ..., |
| 263 | +) -> NDArray[_SCTNoCast]: ... |
| 264 | +@overload |
| 265 | +def intersect1d( |
| 266 | + ar1: ArrayLike, |
| 267 | + ar2: ArrayLike, |
| 268 | + assume_unique: bool = ..., |
| 269 | + return_indices: L[False] = ..., |
| 270 | +) -> NDArray[Any]: ... |
| 271 | +@overload |
| 272 | +def intersect1d( |
| 273 | + ar1: _ArrayLike[_SCTNoCast], |
| 274 | + ar2: _ArrayLike[_SCTNoCast], |
| 275 | + assume_unique: bool = ..., |
| 276 | + return_indices: L[True] = ..., |
| 277 | +) -> Tuple[NDArray[_SCTNoCast], NDArray[intp], NDArray[intp]]: ... |
| 278 | +@overload |
| 279 | +def intersect1d( |
| 280 | + ar1: ArrayLike, |
| 281 | + ar2: ArrayLike, |
| 282 | + assume_unique: bool = ..., |
| 283 | + return_indices: L[True] = ..., |
| 284 | +) -> Tuple[NDArray[Any], NDArray[intp], NDArray[intp]]: ... |
| 285 | + |
| 286 | +@overload |
| 287 | +def setxor1d( |
| 288 | + ar1: _ArrayLike[_SCTNoCast], |
| 289 | + ar2: _ArrayLike[_SCTNoCast], |
| 290 | + assume_unique: bool = ..., |
| 291 | +) -> NDArray[_SCTNoCast]: ... |
| 292 | +@overload |
| 293 | +def setxor1d( |
| 294 | + ar1: ArrayLike, |
| 295 | + ar2: ArrayLike, |
| 296 | + assume_unique: bool = ..., |
| 297 | +) -> NDArray[Any]: ... |
| 298 | + |
| 299 | +def in1d( |
| 300 | + ar1: ArrayLike, |
| 301 | + ar2: ArrayLike, |
| 302 | + assume_unique: bool = ..., |
| 303 | + invert: bool = ..., |
| 304 | +) -> NDArray[bool_]: ... |
| 305 | + |
| 306 | +def isin( |
| 307 | + element: ArrayLike, |
| 308 | + test_elements: ArrayLike, |
| 309 | + assume_unique: bool = ..., |
| 310 | + invert: bool = ..., |
| 311 | +) -> NDArray[bool_]: ... |
| 312 | + |
| 313 | +@overload |
| 314 | +def union1d( |
| 315 | + ar1: _ArrayLike[_SCTNoCast], |
| 316 | + ar2: _ArrayLike[_SCTNoCast], |
| 317 | +) -> NDArray[_SCTNoCast]: ... |
| 318 | +@overload |
| 319 | +def union1d( |
| 320 | + ar1: ArrayLike, |
| 321 | + ar2: ArrayLike, |
| 322 | +) -> NDArray[Any]: ... |
| 323 | + |
| 324 | +@overload |
| 325 | +def setdiff1d( |
| 326 | + ar1: _ArrayLike[_SCTNoCast], |
| 327 | + ar2: _ArrayLike[_SCTNoCast], |
| 328 | + assume_unique: bool = ..., |
| 329 | +) -> NDArray[_SCTNoCast]: ... |
| 330 | +@overload |
| 331 | +def setdiff1d( |
| 332 | + ar1: ArrayLike, |
| 333 | + ar2: ArrayLike, |
| 334 | + assume_unique: bool = ..., |
| 335 | +) -> NDArray[Any]: ... |
0 commit comments