|
2 | 2 |
|
3 | 3 | import numpy as np |
4 | 4 | from numpy.testing import assert_array_equal |
5 | | - |
6 | | - |
7 | | -SF = np.core._multiarray_umath._get_sfloat_dtype() |
8 | | - |
9 | | - |
10 | | -@pytest.mark.parametrize("scaling", [1., -1., 2.]) |
11 | | -def test_scaled_float_from_floats(scaling): |
12 | | - a = np.array([1., 2., 3.], dtype=SF(scaling)) |
13 | | - |
14 | | - assert a.dtype.get_scaling() == scaling |
15 | | - assert_array_equal(scaling * a.view(np.float64), np.array([1., 2., 3.])) |
16 | | - |
17 | | - |
18 | | -@pytest.mark.parametrize("scaling", [1., -1., 2.]) |
19 | | -def test_sfloat_from_float(scaling): |
20 | | - a = np.array([1., 2., 3.]).astype(dtype=SF(scaling)) |
21 | | - |
22 | | - assert a.dtype.get_scaling() == scaling |
23 | | - assert_array_equal(scaling * a.view(np.float64), np.array([1., 2., 3.])) |
24 | | - |
25 | | - |
26 | | -def _get_array(scaling, aligned=True): |
27 | | - if not aligned: |
28 | | - a = np.empty(3*8 + 1, dtype=np.uint8)[1:] |
29 | | - a = a.view(np.float64) |
30 | | - a[:] = [1., 2., 3.] |
31 | | - else: |
32 | | - a = np.array([1., 2., 3.]) |
33 | | - |
34 | | - a *= 1./scaling # the casting code also uses the reciprocal. |
35 | | - return a.view(SF(scaling)) |
36 | | - |
37 | | - |
38 | | -@pytest.mark.parametrize("aligned", [True, False]) |
39 | | -def test_sfloat_casts(aligned): |
40 | | - a = _get_array(1., aligned) |
41 | | - |
42 | | - assert np.can_cast(a, SF(-1.), casting="equiv") |
43 | | - assert not np.can_cast(a, SF(-1.), casting="no") |
44 | | - na = a.astype(SF(-1.)) |
45 | | - assert_array_equal(-1 * na.view(np.float64), a.view(np.float64)) |
46 | | - |
47 | | - assert np.can_cast(a, SF(2.), casting="same_kind") |
48 | | - assert not np.can_cast(a, SF(2.), casting="safe") |
49 | | - a2 = a.astype(SF(2.)) |
50 | | - assert_array_equal(2 * a2.view(np.float64), a.view(np.float64)) |
51 | | - |
52 | | - |
53 | | -@pytest.mark.parametrize("aligned", [True, False]) |
54 | | -def test_sfloat_cast_internal_errors(aligned): |
55 | | - a = _get_array(2e300, aligned) |
56 | | - |
57 | | - with pytest.raises(TypeError, |
58 | | - match="error raised inside the core-loop: non-finite factor!"): |
59 | | - a.astype(SF(2e-300)) |
60 | | - |
| 5 | +from numpy.core._multiarray_umath import ( |
| 6 | + _discover_array_parameters as discover_array_params, _get_sfloat_dtype) |
| 7 | + |
| 8 | + |
| 9 | +SF = _get_sfloat_dtype() |
| 10 | + |
| 11 | + |
| 12 | +class TestSFloat: |
| 13 | + def _get_array(self, scaling, aligned=True): |
| 14 | + if not aligned: |
| 15 | + a = np.empty(3*8 + 1, dtype=np.uint8)[1:] |
| 16 | + a = a.view(np.float64) |
| 17 | + a[:] = [1., 2., 3.] |
| 18 | + else: |
| 19 | + a = np.array([1., 2., 3.]) |
| 20 | + |
| 21 | + a *= 1./scaling # the casting code also uses the reciprocal. |
| 22 | + return a.view(SF(scaling)) |
| 23 | + |
| 24 | + def test_sfloat_rescaled(self): |
| 25 | + sf = SF(1.) |
| 26 | + sf2 = sf.scaled_by(2.) |
| 27 | + assert sf2.get_scaling() == 2. |
| 28 | + sf6 = sf2.scaled_by(3.) |
| 29 | + assert sf6.get_scaling() == 6. |
| 30 | + |
| 31 | + def test_class_discovery(self): |
| 32 | + # This does not test much, since we always discover the scaling as 1. |
| 33 | + # But most of NumPy (when writing) does not understand DType classes |
| 34 | + dt, _ = discover_array_params([1., 2., 3.], dtype=SF) |
| 35 | + assert dt == SF(1.) |
| 36 | + |
| 37 | + @pytest.mark.parametrize("scaling", [1., -1., 2.]) |
| 38 | + def test_scaled_float_from_floats(self, scaling): |
| 39 | + a = np.array([1., 2., 3.], dtype=SF(scaling)) |
| 40 | + |
| 41 | + assert a.dtype.get_scaling() == scaling |
| 42 | + assert_array_equal(scaling * a.view(np.float64), [1., 2., 3.]) |
| 43 | + |
| 44 | + def test_repr(self): |
| 45 | + # Check the repr, mainly to cover the code paths: |
| 46 | + assert repr(SF(scaling=1.)) == "_ScaledFloatTestDType(scaling=1.0)" |
| 47 | + |
| 48 | + @pytest.mark.parametrize("scaling", [1., -1., 2.]) |
| 49 | + def test_sfloat_from_float(self, scaling): |
| 50 | + a = np.array([1., 2., 3.]).astype(dtype=SF(scaling)) |
| 51 | + |
| 52 | + assert a.dtype.get_scaling() == scaling |
| 53 | + assert_array_equal(scaling * a.view(np.float64), [1., 2., 3.]) |
| 54 | + |
| 55 | + @pytest.mark.parametrize("aligned", [True, False]) |
| 56 | + @pytest.mark.parametrize("scaling", [1., -1., 2.]) |
| 57 | + def test_sfloat_getitem(self, aligned, scaling): |
| 58 | + a = self._get_array(1., aligned) |
| 59 | + assert a.tolist() == [1., 2., 3.] |
| 60 | + |
| 61 | + @pytest.mark.parametrize("aligned", [True, False]) |
| 62 | + def test_sfloat_casts(self, aligned): |
| 63 | + a = self._get_array(1., aligned) |
| 64 | + |
| 65 | + assert np.can_cast(a, SF(-1.), casting="equiv") |
| 66 | + assert not np.can_cast(a, SF(-1.), casting="no") |
| 67 | + na = a.astype(SF(-1.)) |
| 68 | + assert_array_equal(-1 * na.view(np.float64), a.view(np.float64)) |
| 69 | + |
| 70 | + assert np.can_cast(a, SF(2.), casting="same_kind") |
| 71 | + assert not np.can_cast(a, SF(2.), casting="safe") |
| 72 | + a2 = a.astype(SF(2.)) |
| 73 | + assert_array_equal(2 * a2.view(np.float64), a.view(np.float64)) |
| 74 | + |
| 75 | + @pytest.mark.parametrize("aligned", [True, False]) |
| 76 | + def test_sfloat_cast_internal_errors(self, aligned): |
| 77 | + a = self._get_array(2e300, aligned) |
| 78 | + |
| 79 | + with pytest.raises(TypeError, |
| 80 | + match="error raised inside the core-loop: non-finite factor!"): |
| 81 | + a.astype(SF(2e-300)) |
| 82 | + |
| 83 | + def test_sfloat_promotion(self): |
| 84 | + assert np.result_type(SF(2.), SF(3.)) == SF(3.) |
| 85 | + assert np.result_type(SF(3.), SF(2.)) == SF(3.) |
| 86 | + # Float64 -> SF(1.) and then promotes normally, so both of this work: |
| 87 | + assert np.result_type(SF(3.), np.float64) == SF(3.) |
| 88 | + assert np.result_type(np.float64, SF(0.5)) == SF(1.) |
| 89 | + |
| 90 | + # Test an undefined promotion: |
| 91 | + with pytest.raises(TypeError): |
| 92 | + np.result_type(SF(1.), np.int64) |
0 commit comments