|
1 | | -def tensorsolve(a, b, axes=...): ... |
2 | | -def solve(a, b): ... |
3 | | -def tensorinv(a, ind=...): ... |
4 | | -def inv(a): ... |
5 | | -def matrix_power(a, n): ... |
6 | | -def cholesky(a): ... |
7 | | -def qr(a, mode=...): ... |
8 | | -def eigvals(a): ... |
9 | | -def eigvalsh(a, UPLO=...): ... |
10 | | -def eig(a): ... |
11 | | -def eigh(a, UPLO=...): ... |
12 | | -def svd(a, full_matrices=..., compute_uv=..., hermitian=...): ... |
13 | | -def cond(x, p=...): ... |
14 | | -def matrix_rank(A, tol=..., hermitian=...): ... |
15 | | -def pinv(a, rcond=..., hermitian=...): ... |
16 | | -def slogdet(a): ... |
17 | | -def det(a): ... |
18 | | -def lstsq(a, b, rcond=...): ... |
19 | | -def norm(x, ord=..., axis=..., keepdims=...): ... |
20 | | -def multi_dot(arrays, *, out=...): ... |
| 1 | +from typing import ( |
| 2 | + Literal as L, |
| 3 | + List, |
| 4 | + Iterable, |
| 5 | + overload, |
| 6 | + TypeVar, |
| 7 | + Any, |
| 8 | + SupportsIndex, |
| 9 | + SupportsInt, |
| 10 | + Tuple, |
| 11 | +) |
| 12 | + |
| 13 | +from numpy import generic, int32, floating, float64, complexfloating |
| 14 | +from numpy.typing import ( |
| 15 | + NDArray, |
| 16 | + ArrayLike, |
| 17 | + _ArrayLikeInt_co, |
| 18 | + _ArrayLikeFloat_co, |
| 19 | + _ArrayLikeComplex_co, |
| 20 | + _ArrayLikeTD64_co, |
| 21 | + _ArrayLikeObject_co, |
| 22 | +) |
| 23 | + |
| 24 | +_T = TypeVar("_T") |
| 25 | +_ArrayType = TypeVar("_ArrayType", bound=NDArray[Any]) |
| 26 | + |
| 27 | +_2Tuple = Tuple[_T, _T] |
| 28 | +_ModeKind = L["reduced", "complete", "r", "raw"] |
| 29 | + |
| 30 | +__all__: List[str] |
| 31 | + |
| 32 | +@overload |
| 33 | +def tensorsolve( |
| 34 | + a: _ArrayLikeInt_co, |
| 35 | + b: _ArrayLikeInt_co, |
| 36 | + axes: None | Iterable[int] =..., |
| 37 | +) -> NDArray[float64]: ... |
| 38 | +@overload |
| 39 | +def tensorsolve( |
| 40 | + a: _ArrayLikeFloat_co, |
| 41 | + b: _ArrayLikeFloat_co, |
| 42 | + axes: None | Iterable[int] =..., |
| 43 | +) -> NDArray[floating[Any]]: ... |
| 44 | +@overload |
| 45 | +def tensorsolve( |
| 46 | + a: _ArrayLikeComplex_co, |
| 47 | + b: _ArrayLikeComplex_co, |
| 48 | + axes: None | Iterable[int] =..., |
| 49 | +) -> NDArray[complexfloating[Any, Any]]: ... |
| 50 | + |
| 51 | +@overload |
| 52 | +def solve( |
| 53 | + a: _ArrayLikeInt_co, |
| 54 | + b: _ArrayLikeInt_co, |
| 55 | +) -> NDArray[float64]: ... |
| 56 | +@overload |
| 57 | +def solve( |
| 58 | + a: _ArrayLikeFloat_co, |
| 59 | + b: _ArrayLikeFloat_co, |
| 60 | +) -> NDArray[floating[Any]]: ... |
| 61 | +@overload |
| 62 | +def solve( |
| 63 | + a: _ArrayLikeComplex_co, |
| 64 | + b: _ArrayLikeComplex_co, |
| 65 | +) -> NDArray[complexfloating[Any, Any]]: ... |
| 66 | + |
| 67 | +@overload |
| 68 | +def tensorinv( |
| 69 | + a: _ArrayLikeInt_co, |
| 70 | + ind: int = ..., |
| 71 | +) -> NDArray[float64]: ... |
| 72 | +@overload |
| 73 | +def tensorinv( |
| 74 | + a: _ArrayLikeFloat_co, |
| 75 | + ind: int = ..., |
| 76 | +) -> NDArray[floating[Any]]: ... |
| 77 | +@overload |
| 78 | +def tensorinv( |
| 79 | + a: _ArrayLikeComplex_co, |
| 80 | + ind: int = ..., |
| 81 | +) -> NDArray[complexfloating[Any, Any]]: ... |
| 82 | + |
| 83 | +@overload |
| 84 | +def inv(a: _ArrayLikeInt_co) -> NDArray[float64]: ... |
| 85 | +@overload |
| 86 | +def inv(a: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ... |
| 87 | +@overload |
| 88 | +def inv(a: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ... |
| 89 | + |
| 90 | +# TODO: The supported input and output dtypes are dependant on the value of `n`. |
| 91 | +# For example: `n < 0` always casts integer types to float64 |
| 92 | +def matrix_power( |
| 93 | + a: _ArrayLikeComplex_co | _ArrayLikeObject_co, |
| 94 | + n: SupportsIndex, |
| 95 | +) -> NDArray[Any]: ... |
| 96 | + |
| 97 | +@overload |
| 98 | +def cholesky(a: _ArrayLikeInt_co) -> NDArray[float64]: ... |
| 99 | +@overload |
| 100 | +def cholesky(a: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ... |
| 101 | +@overload |
| 102 | +def cholesky(a: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ... |
| 103 | + |
| 104 | +@overload |
| 105 | +def qr(a: _ArrayLikeInt_co, mode: _ModeKind = ...) -> _2Tuple[NDArray[float64]]: ... |
| 106 | +@overload |
| 107 | +def qr(a: _ArrayLikeFloat_co, mode: _ModeKind = ...) -> _2Tuple[NDArray[floating[Any]]]: ... |
| 108 | +@overload |
| 109 | +def qr(a: _ArrayLikeComplex_co, mode: _ModeKind = ...) -> _2Tuple[NDArray[complexfloating[Any, Any]]]: ... |
| 110 | + |
| 111 | +@overload |
| 112 | +def eigvals(a: _ArrayLikeInt_co) -> NDArray[float64]: ... |
| 113 | +@overload |
| 114 | +def eigvals(a: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ... |
| 115 | +@overload |
| 116 | +def eigvals(a: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ... |
| 117 | + |
| 118 | +@overload |
| 119 | +def eigvalsh(a: _ArrayLikeInt_co, UPLO: L["L", "U", "l", "u"] = ...) -> NDArray[float64]: ... |
| 120 | +@overload |
| 121 | +def eigvalsh(a: _ArrayLikeComplex_co, UPLO: L["L", "U", "l", "u"] = ...) -> NDArray[floating[Any]]: ... |
| 122 | + |
| 123 | +@overload |
| 124 | +def eig(a: _ArrayLikeInt_co) -> _2Tuple[NDArray[float64]]: ... |
| 125 | +@overload |
| 126 | +def eig(a: _ArrayLikeFloat_co) -> _2Tuple[NDArray[floating[Any]]]: ... |
| 127 | +@overload |
| 128 | +def eig(a: _ArrayLikeComplex_co) -> _2Tuple[NDArray[complexfloating[Any, Any]]]: ... |
| 129 | + |
| 130 | +@overload |
| 131 | +def eigh( |
| 132 | + a: _ArrayLikeInt_co, |
| 133 | + UPLO: L["L", "U", "l", "u"] = ..., |
| 134 | +) -> Tuple[NDArray[float64], NDArray[float64]]: ... |
| 135 | +@overload |
| 136 | +def eigh( |
| 137 | + a: _ArrayLikeFloat_co, |
| 138 | + UPLO: L["L", "U", "l", "u"] = ..., |
| 139 | +) -> Tuple[NDArray[floating[Any]], NDArray[floating[Any]]]: ... |
| 140 | +@overload |
| 141 | +def eigh( |
| 142 | + a: _ArrayLikeComplex_co, |
| 143 | + UPLO: L["L", "U", "l", "u"] = ..., |
| 144 | +) -> Tuple[NDArray[floating[Any]], NDArray[complexfloating[Any, Any]]]: ... |
| 145 | + |
| 146 | +@overload |
| 147 | +def svd( |
| 148 | + a: _ArrayLikeInt_co, |
| 149 | + full_matrices: bool = ..., |
| 150 | + compute_uv: L[True] = ..., |
| 151 | + hermitian: bool = ..., |
| 152 | +) -> Tuple[ |
| 153 | + NDArray[float64], |
| 154 | + NDArray[float64], |
| 155 | + NDArray[float64], |
| 156 | +]: ... |
| 157 | +@overload |
| 158 | +def svd( |
| 159 | + a: _ArrayLikeFloat_co, |
| 160 | + full_matrices: bool = ..., |
| 161 | + compute_uv: L[True] = ..., |
| 162 | + hermitian: bool = ..., |
| 163 | +) -> Tuple[ |
| 164 | + NDArray[floating[Any]], |
| 165 | + NDArray[floating[Any]], |
| 166 | + NDArray[floating[Any]], |
| 167 | +]: ... |
| 168 | +@overload |
| 169 | +def svd( |
| 170 | + a: _ArrayLikeComplex_co, |
| 171 | + full_matrices: bool = ..., |
| 172 | + compute_uv: L[True] = ..., |
| 173 | + hermitian: bool = ..., |
| 174 | +) -> Tuple[ |
| 175 | + NDArray[complexfloating[Any, Any]], |
| 176 | + NDArray[floating[Any]], |
| 177 | + NDArray[complexfloating[Any, Any]], |
| 178 | +]: ... |
| 179 | +@overload |
| 180 | +def svd( |
| 181 | + a: _ArrayLikeInt_co, |
| 182 | + full_matrices: bool = ..., |
| 183 | + compute_uv: L[False] = ..., |
| 184 | + hermitian: bool = ..., |
| 185 | +) -> NDArray[float64]: ... |
| 186 | +@overload |
| 187 | +def svd( |
| 188 | + a: _ArrayLikeComplex_co, |
| 189 | + full_matrices: bool = ..., |
| 190 | + compute_uv: L[False] = ..., |
| 191 | + hermitian: bool = ..., |
| 192 | +) -> NDArray[floating[Any]]: ... |
| 193 | + |
| 194 | +# TODO: Returns a scalar for 2D arrays and |
| 195 | +# a `(x.ndim - 2)`` dimensionl array otherwise |
| 196 | +def cond(x: _ArrayLikeComplex_co, p: None | float | L["fro", "nuc"] = ...) -> Any: ... |
| 197 | + |
| 198 | +# TODO: Returns `int` for <2D arrays and `intp` otherwise |
| 199 | +def matrix_rank( |
| 200 | + A: _ArrayLikeComplex_co, |
| 201 | + tol: None | _ArrayLikeFloat_co = ..., |
| 202 | + hermitian: bool = ..., |
| 203 | +) -> Any: ... |
| 204 | + |
| 205 | +@overload |
| 206 | +def pinv( |
| 207 | + a: _ArrayLikeInt_co, |
| 208 | + rcond: _ArrayLikeFloat_co = ..., |
| 209 | + hermitian: bool = ..., |
| 210 | +) -> NDArray[float64]: ... |
| 211 | +@overload |
| 212 | +def pinv( |
| 213 | + a: _ArrayLikeFloat_co, |
| 214 | + rcond: _ArrayLikeFloat_co = ..., |
| 215 | + hermitian: bool = ..., |
| 216 | +) -> NDArray[floating[Any]]: ... |
| 217 | +@overload |
| 218 | +def pinv( |
| 219 | + a: _ArrayLikeComplex_co, |
| 220 | + rcond: _ArrayLikeFloat_co = ..., |
| 221 | + hermitian: bool = ..., |
| 222 | +) -> NDArray[complexfloating[Any, Any]]: ... |
| 223 | + |
| 224 | +# TODO: Returns a 2-tuple of scalars for 2D arrays and |
| 225 | +# a 2-tuple of `(a.ndim - 2)`` dimensionl arrays otherwise |
| 226 | +def slogdet(a: _ArrayLikeComplex_co) -> _2Tuple[Any]: ... |
| 227 | + |
| 228 | +# TODO: Returns a 2-tuple of scalars for 2D arrays and |
| 229 | +# a 2-tuple of `(a.ndim - 2)`` dimensionl arrays otherwise |
| 230 | +def det(a: _ArrayLikeComplex_co) -> Any: ... |
| 231 | + |
| 232 | +@overload |
| 233 | +def lstsq(a: _ArrayLikeInt_co, b: _ArrayLikeInt_co, rcond: None | float = ...) -> Tuple[ |
| 234 | + NDArray[float64], |
| 235 | + NDArray[float64], |
| 236 | + int32, |
| 237 | + NDArray[float64], |
| 238 | +]: ... |
| 239 | +@overload |
| 240 | +def lstsq(a: _ArrayLikeFloat_co, b: _ArrayLikeFloat_co, rcond: None | float = ...) -> Tuple[ |
| 241 | + NDArray[floating[Any]], |
| 242 | + NDArray[floating[Any]], |
| 243 | + int32, |
| 244 | + NDArray[floating[Any]], |
| 245 | +]: ... |
| 246 | +@overload |
| 247 | +def lstsq(a: _ArrayLikeComplex_co, b: _ArrayLikeComplex_co, rcond: None | float = ...) -> Tuple[ |
| 248 | + NDArray[complexfloating[Any, Any]], |
| 249 | + NDArray[floating[Any]], |
| 250 | + int32, |
| 251 | + NDArray[floating[Any]], |
| 252 | +]: ... |
| 253 | + |
| 254 | +@overload |
| 255 | +def norm( |
| 256 | + x: ArrayLike, |
| 257 | + ord: None | float | L["fro", "nuc"] = ..., |
| 258 | + axis: None = ..., |
| 259 | + keepdims: bool = ..., |
| 260 | +) -> floating[Any]: ... |
| 261 | +@overload |
| 262 | +def norm( |
| 263 | + x: ArrayLike, |
| 264 | + ord: None | float | L["fro", "nuc"] = ..., |
| 265 | + axis: SupportsInt | SupportsIndex | Tuple[int, ...] = ..., |
| 266 | + keepdims: bool = ..., |
| 267 | +) -> Any: ... |
| 268 | + |
| 269 | +# TODO: Returns a scalar or array |
| 270 | +def multi_dot( |
| 271 | + arrays: Iterable[_ArrayLikeComplex_co | _ArrayLikeObject_co | _ArrayLikeTD64_co], |
| 272 | + *, |
| 273 | + out: None | NDArray[Any] = ..., |
| 274 | +) -> Any: ... |
0 commit comments