|
12 | 12 | }, |
13 | 13 | { |
14 | 14 | "cell_type": "code", |
15 | | - "execution_count": 1, |
| 15 | + "execution_count": null, |
16 | 16 | "metadata": {}, |
17 | 17 | "outputs": [], |
18 | 18 | "source": [ |
19 | | - "# Install s2fft\n", |
20 | | - "!pip install s2fft &> /dev/null" |
| 19 | + "import sys\n", |
| 20 | + "IN_COLAB = 'google.colab' in sys.modules\n", |
| 21 | + "\n", |
| 22 | + "# Install a spherical plotting package.\n", |
| 23 | + "!pip install cartopy &> /dev/null\n", |
| 24 | + "\n", |
| 25 | + "# Install s2fft and data if running on google colab.\n", |
| 26 | + "if IN_COLAB:\n", |
| 27 | + " !pip install s2fft &> /dev/null\n", |
| 28 | + " !mkdir data/\n", |
| 29 | + " !wget https://github.com/astro-informatics/s2fft/raw/main/notebooks/data/Gaia_EDR3_flux.npy -P data/ &> /dev/null" |
21 | 30 | ] |
22 | 31 | }, |
23 | 32 | { |
|
32 | 41 | }, |
33 | 42 | { |
34 | 43 | "cell_type": "code", |
35 | | - "execution_count": 2, |
| 44 | + "execution_count": null, |
36 | 45 | "metadata": {}, |
37 | 46 | "outputs": [], |
38 | 47 | "source": [ |
39 | 48 | "import jax\n", |
40 | 49 | "jax.config.update(\"jax_enable_x64\", True)\n", |
41 | 50 | "\n", |
42 | 51 | "import numpy as np\n", |
| 52 | + "from matplotlib import pyplot as plt \n", |
| 53 | + "import cartopy.crs as ccrs \n", |
43 | 54 | "import s2fft \n", |
44 | 55 | "\n", |
45 | | - "L = 256\n", |
46 | 56 | "sampling = \"mw\"\n", |
47 | | - "flm = np.random.randn(L, 2*L-1) + 1j*np.random.randn(L, 2*L-1)\n", |
48 | | - "f = s2fft.inverse_jax(flm, L)" |
| 57 | + "f = np.load('data/Gaia_EDR3_flux.npy')\n", |
| 58 | + "L = f.shape[0]" |
| 59 | + ] |
| 60 | + }, |
| 61 | + { |
| 62 | + "cell_type": "markdown", |
| 63 | + "metadata": {}, |
| 64 | + "source": [ |
| 65 | + "Lets look at the input signal" |
| 66 | + ] |
| 67 | + }, |
| 68 | + { |
| 69 | + "cell_type": "code", |
| 70 | + "execution_count": null, |
| 71 | + "metadata": {}, |
| 72 | + "outputs": [], |
| 73 | + "source": [ |
| 74 | + "plt.figure(figsize=(10,5))\n", |
| 75 | + "ax = plt.axes(projection=ccrs.Mollweide())\n", |
| 76 | + "im = ax.imshow(f, transform=ccrs.PlateCarree(), cmap='magma')\n", |
| 77 | + "plt.axis('off')\n", |
| 78 | + "plt.show()" |
49 | 79 | ] |
50 | 80 | }, |
51 | 81 | { |
|
62 | 92 | }, |
63 | 93 | { |
64 | 94 | "cell_type": "code", |
65 | | - "execution_count": 3, |
| 95 | + "execution_count": null, |
66 | 96 | "metadata": {}, |
67 | 97 | "outputs": [], |
68 | 98 | "source": [ |
|
81 | 111 | }, |
82 | 112 | { |
83 | 113 | "cell_type": "code", |
84 | | - "execution_count": 4, |
| 114 | + "execution_count": null, |
85 | 115 | "metadata": {}, |
86 | 116 | "outputs": [], |
87 | 117 | "source": [ |
|
103 | 133 | }, |
104 | 134 | { |
105 | 135 | "cell_type": "code", |
106 | | - "execution_count": 5, |
| 136 | + "execution_count": null, |
107 | 137 | "metadata": {}, |
108 | 138 | "outputs": [], |
109 | 139 | "source": [ |
|
122 | 152 | }, |
123 | 153 | { |
124 | 154 | "cell_type": "code", |
125 | | - "execution_count": 6, |
| 155 | + "execution_count": null, |
126 | 156 | "metadata": {}, |
127 | 157 | "outputs": [], |
128 | 158 | "source": [ |
|
144 | 174 | }, |
145 | 175 | { |
146 | 176 | "cell_type": "code", |
147 | | - "execution_count": 7, |
148 | | - "metadata": {}, |
149 | | - "outputs": [ |
150 | | - { |
151 | | - "name": "stdout", |
152 | | - "output_type": "stream", |
153 | | - "text": [ |
154 | | - "Mean absolute error = 8.478196507592078e-11\n" |
155 | | - ] |
156 | | - } |
157 | | - ], |
| 177 | + "execution_count": null, |
| 178 | + "metadata": {}, |
| 179 | + "outputs": [], |
158 | 180 | "source": [ |
159 | 181 | "print(f\"Mean absolute error = {np.nanmean(np.abs(f_recov - f))}\")" |
160 | 182 | ] |
161 | 183 | }, |
162 | 184 | { |
163 | 185 | "cell_type": "code", |
164 | | - "execution_count": 8, |
165 | | - "metadata": {}, |
166 | | - "outputs": [ |
167 | | - { |
168 | | - "name": "stdout", |
169 | | - "output_type": "stream", |
170 | | - "text": [ |
171 | | - "Mean absolute error using precomputes = 8.478196507592078e-11\n" |
172 | | - ] |
173 | | - } |
174 | | - ], |
| 186 | + "execution_count": null, |
| 187 | + "metadata": {}, |
| 188 | + "outputs": [], |
175 | 189 | "source": [ |
176 | 190 | "print(f\"Mean absolute error using precomputes = {np.nanmean(np.abs(f_recov_pre - f))}\")" |
177 | 191 | ] |
|
193 | 207 | "name": "python", |
194 | 208 | "nbconvert_exporter": "python", |
195 | 209 | "pygments_lexer": "ipython3", |
196 | | - "version": "3.11.8" |
| 210 | + "version": "3.10.0" |
197 | 211 | }, |
198 | 212 | "orig_nbformat": 4, |
199 | 213 | "vscode": { |
|
0 commit comments