|
| 1 | +"""Benchmarks for precompute Wigner-d transforms.""" |
| 2 | + |
| 3 | +import numpy as np |
| 4 | +from benchmarking import benchmark, parse_args_collect_and_run_benchmarks, skip |
| 5 | + |
| 6 | +import s2fft |
| 7 | +import s2fft.precompute_transforms |
| 8 | +from s2fft.base_transforms import wigner as base_wigner |
| 9 | +from s2fft.sampling import s2_samples as samples |
| 10 | + |
| 11 | +L_VALUES = [16, 32, 64, 128, 256] |
| 12 | +N_VALUES = [2] |
| 13 | +L_LOWER_VALUES = [0] |
| 14 | +SAMPLING_VALUES = ["mw"] |
| 15 | +METHOD_VALUES = ["numpy", "jax"] |
| 16 | +REALITY_VALUES = [True] |
| 17 | + |
| 18 | +def setup_forward(method, L, N, L_lower, sampling, reality): |
| 19 | + rng = np.random.default_rng() |
| 20 | + flmn = s2fft.utils.signal_generator.generate_flmn(rng, L, N, reality=reality) |
| 21 | + f = base_wigner.inverse( |
| 22 | + flmn, |
| 23 | + L, |
| 24 | + N, |
| 25 | + L_lower=L_lower, |
| 26 | + sampling=sampling, |
| 27 | + reality=reality, |
| 28 | + ) |
| 29 | + kernel_function = ( |
| 30 | + s2fft.precompute_transforms.construct.wigner_kernel_jax |
| 31 | + if method == "jax" |
| 32 | + else s2fft.precompute_transforms.construct.wigner_kernel |
| 33 | + ) |
| 34 | + kernel = kernel_function( |
| 35 | + L=L, N=N, reality=reality, sampling=sampling, forward=True |
| 36 | + ) |
| 37 | + return {"f": f, "kernel": kernel} |
| 38 | + |
| 39 | + |
| 40 | +@benchmark( |
| 41 | + setup_forward, |
| 42 | + method=METHOD_VALUES, |
| 43 | + L=L_VALUES, |
| 44 | + N=N_VALUES, |
| 45 | + L_lower=L_LOWER_VALUES, |
| 46 | + sampling=SAMPLING_VALUES, |
| 47 | + reality=REALITY_VALUES, |
| 48 | +) |
| 49 | +def forward(f, kernel, method, L, N, L_lower, sampling, reality): |
| 50 | + flmn = s2fft.precompute_transforms.wigner.forward( |
| 51 | + f=f, |
| 52 | + L=L, |
| 53 | + N=N, |
| 54 | + kernel=kernel, |
| 55 | + sampling=sampling, |
| 56 | + reality=reality, |
| 57 | + method=method, |
| 58 | + ) |
| 59 | + if method == "jax": |
| 60 | + flmn.block_until_ready() |
| 61 | + |
| 62 | + |
| 63 | +def setup_inverse(method, L, N, L_lower, sampling, reality): |
| 64 | + rng = np.random.default_rng() |
| 65 | + flmn = s2fft.utils.signal_generator.generate_flmn(rng, L, N, reality=reality) |
| 66 | + kernel_function = ( |
| 67 | + s2fft.precompute_transforms.construct.wigner_kernel_jax |
| 68 | + if method == "jax" |
| 69 | + else s2fft.precompute_transforms.construct.wigner_kernel |
| 70 | + ) |
| 71 | + kernel = kernel_function( |
| 72 | + L=L, N=N, reality=reality, sampling=sampling, forward=False |
| 73 | + ) |
| 74 | + return {"flmn": flmn, "kernel": kernel} |
| 75 | + |
| 76 | + |
| 77 | +@benchmark( |
| 78 | + setup_inverse, |
| 79 | + method=METHOD_VALUES, |
| 80 | + L=L_VALUES, |
| 81 | + N=N_VALUES, |
| 82 | + L_lower=L_LOWER_VALUES, |
| 83 | + sampling=SAMPLING_VALUES, |
| 84 | + reality=REALITY_VALUES, |
| 85 | +) |
| 86 | +def inverse(flmn, kernel, method, L, N, L_lower, sampling, reality): |
| 87 | + f = s2fft.precompute_transforms.wigner.inverse( |
| 88 | + flmn=flmn, |
| 89 | + L=L, |
| 90 | + N=N, |
| 91 | + kernel=kernel, |
| 92 | + sampling=sampling, |
| 93 | + reality=reality, |
| 94 | + method=method, |
| 95 | + ) |
| 96 | + if method == "jax": |
| 97 | + f.block_until_ready() |
| 98 | + |
| 99 | + |
| 100 | +if __name__ == "__main__": |
| 101 | + results = parse_args_collect_and_run_benchmarks() |
0 commit comments