|
| 1 | +"""Utilities for plotting benchmark results.""" |
| 2 | + |
| 3 | +import argparse |
| 4 | +import json |
| 5 | +from pathlib import Path |
| 6 | + |
| 7 | +import matplotlib.pyplot as plt |
| 8 | +import numpy as np |
| 9 | + |
| 10 | + |
| 11 | +def _set_axis_properties( |
| 12 | + ax: plt.Axes, |
| 13 | + parameter_values: np.ndarray, |
| 14 | + parameter_label: str, |
| 15 | + measurement_label: str, |
| 16 | +) -> None: |
| 17 | + ax.set( |
| 18 | + xlabel=parameter_label, |
| 19 | + ylabel=measurement_label, |
| 20 | + xscale="log", |
| 21 | + yscale="log", |
| 22 | + xticks=parameter_values, |
| 23 | + xticklabels=parameter_values, |
| 24 | + ) |
| 25 | + ax.minorticks_off() |
| 26 | + |
| 27 | + |
| 28 | +def _plot_scaling_guide( |
| 29 | + ax: plt.Axes, |
| 30 | + parameter_symbol: str, |
| 31 | + parameter_values: np.ndarray, |
| 32 | + measurement_values: np.ndarray, |
| 33 | + order: int, |
| 34 | +) -> None: |
| 35 | + n = np.argsort(parameter_values)[len(parameter_values) // 2] |
| 36 | + coefficient = measurement_values[n] / parameter_values[n] ** order |
| 37 | + ax.plot( |
| 38 | + parameter_values, |
| 39 | + coefficient * parameter_values**order, |
| 40 | + "k:", |
| 41 | + label=f"$\\mathcal{{O}}({parameter_symbol}^{order})$", |
| 42 | + ) |
| 43 | + |
| 44 | + |
| 45 | +def plot_times( |
| 46 | + ax: plt.Axes, parameter_symbol: str, parameter_values: np.ndarray, results: dict |
| 47 | +) -> None: |
| 48 | + min_times = np.array([min(r["run_times_in_seconds"]) for r in results]) |
| 49 | + mid_times = np.array([np.median(r["run_times_in_seconds"]) for r in results]) |
| 50 | + max_times = np.array([max(r["run_times_in_seconds"]) for r in results]) |
| 51 | + ax.plot(parameter_values, mid_times, label="Measured") |
| 52 | + ax.fill_between(parameter_values, min_times, max_times, alpha=0.5) |
| 53 | + _plot_scaling_guide(ax, parameter_symbol, parameter_values, mid_times, 3) |
| 54 | + ax.legend() |
| 55 | + |
| 56 | + |
| 57 | +def plot_flops( |
| 58 | + ax: plt.Axes, parameter_symbol: str, parameter_values: np.ndarray, results: dict |
| 59 | +) -> None: |
| 60 | + flops = np.array([r["cost_analysis"]["flops"] for r in results]) |
| 61 | + ax.plot(parameter_values, flops, label="Measured") |
| 62 | + _plot_scaling_guide(ax, parameter_symbol, parameter_values, flops, 2) |
| 63 | + ax.legend() |
| 64 | + |
| 65 | + |
| 66 | +def plot_error( |
| 67 | + ax: plt.Axes, parameter_symbol: str, parameter_values: np.ndarray, results: dict |
| 68 | +) -> None: |
| 69 | + max_abs_errors = np.array([r["max_abs_error"] for r in results]) |
| 70 | + mean_abs_errors = np.array([r["mean_abs_error"] for r in results]) |
| 71 | + ax.plot(parameter_values, max_abs_errors, label="max(abs(error))") |
| 72 | + ax.plot(parameter_values, mean_abs_errors, label="mean(abs(error))") |
| 73 | + _plot_scaling_guide( |
| 74 | + ax, |
| 75 | + parameter_symbol, |
| 76 | + parameter_values, |
| 77 | + (max_abs_errors + mean_abs_errors) / 2, |
| 78 | + 2, |
| 79 | + ) |
| 80 | + ax.legend() |
| 81 | + |
| 82 | + |
| 83 | +def plot_memory( |
| 84 | + ax: plt.Axes, parameter_symbol: str, parameter_values: np.ndarray, results: dict |
| 85 | +) -> None: |
| 86 | + bytes_accessed = np.array([r["cost_analysis"]["bytes_accessed"] for r in results]) |
| 87 | + temp_size_in_bytes = np.array( |
| 88 | + [r["memory_analysis"]["temp_size_in_bytes"] for r in results] |
| 89 | + ) |
| 90 | + output_size_in_bytes = np.array( |
| 91 | + [r["memory_analysis"]["output_size_in_bytes"] for r in results] |
| 92 | + ) |
| 93 | + generated_code_size_in_bytes = np.array( |
| 94 | + [r["memory_analysis"]["generated_code_size_in_bytes"] for r in results] |
| 95 | + ) |
| 96 | + ax.plot(parameter_values, bytes_accessed, label="Accesses") |
| 97 | + ax.plot(parameter_values, temp_size_in_bytes, label="Temporary allocations") |
| 98 | + ax.plot(parameter_values, output_size_in_bytes, label="Output size") |
| 99 | + ax.plot(parameter_values, generated_code_size_in_bytes, label="Generated code size") |
| 100 | + _plot_scaling_guide( |
| 101 | + ax, |
| 102 | + parameter_symbol, |
| 103 | + parameter_values, |
| 104 | + (bytes_accessed + output_size_in_bytes) / 2, |
| 105 | + 2, |
| 106 | + ) |
| 107 | + ax.legend() |
| 108 | + |
| 109 | + |
| 110 | +_measurement_plot_functions_and_labels = { |
| 111 | + "times": (plot_times, "Run time / s"), |
| 112 | + "flops": (plot_flops, "Floating point operations"), |
| 113 | + "memory": (plot_memory, "Memory / B"), |
| 114 | + "error": (plot_error, "Numerical error"), |
| 115 | +} |
| 116 | + |
| 117 | + |
| 118 | +def plot_results_against_bandlimit( |
| 119 | + benchmark_results_path: str | Path, |
| 120 | + functions: tuple[str] = ("forward", "inverse"), |
| 121 | + measurements: tuple[str] = ("times", "flops", "memory", "error"), |
| 122 | + axis_size: float = 3.0, |
| 123 | + fig_dpi: int = 100, |
| 124 | +) -> tuple[plt.Figure, plt.Axes]: |
| 125 | + benchmark_results_path = Path(benchmark_results_path) |
| 126 | + with benchmark_results_path.open("r") as f: |
| 127 | + benchmark_results = json.load(f) |
| 128 | + n_functions = len(functions) |
| 129 | + n_measurements = len(measurements) |
| 130 | + fig, axes = plt.subplots( |
| 131 | + n_functions, |
| 132 | + n_measurements, |
| 133 | + figsize=(axis_size * n_measurements, axis_size * n_functions), |
| 134 | + dpi=fig_dpi, |
| 135 | + squeeze=False, |
| 136 | + ) |
| 137 | + for axes_row, function in zip(axes, functions): |
| 138 | + results = benchmark_results["results"][function] |
| 139 | + l_values = np.array([r["parameters"]["L"] for r in results]) |
| 140 | + for ax, measurement in zip(axes_row, measurements): |
| 141 | + plot_function, label = _measurement_plot_functions_and_labels[measurement] |
| 142 | + try: |
| 143 | + plot_function(ax, "L", l_values, results) |
| 144 | + ax.set(title=function) |
| 145 | + except KeyError: |
| 146 | + ax.axis("off") |
| 147 | + _set_axis_properties(ax, l_values, "Bandlimit $L$", label) |
| 148 | + return fig, ax |
| 149 | + |
| 150 | + |
| 151 | +def _parse_cli_arguments() -> argparse.Namespace: |
| 152 | + """Parse rguments passed for plotting command line interface""" |
| 153 | + parser = argparse.ArgumentParser( |
| 154 | + description="Generate plot from benchmark results file.", |
| 155 | + formatter_class=argparse.ArgumentDefaultsHelpFormatter, |
| 156 | + ) |
| 157 | + parser.add_argument( |
| 158 | + "-results-path", |
| 159 | + type=Path, |
| 160 | + help="Path to JSON file containing benchmark results to plot.", |
| 161 | + ) |
| 162 | + parser.add_argument( |
| 163 | + "-output-path", |
| 164 | + type=Path, |
| 165 | + help="Path to write figure to.", |
| 166 | + ) |
| 167 | + parser.add_argument( |
| 168 | + "-functions", |
| 169 | + nargs="+", |
| 170 | + help="Names of functions to plot. forward and inverse are plotted if omitted.", |
| 171 | + ) |
| 172 | + parser.add_argument( |
| 173 | + "-measurements", |
| 174 | + nargs="+", |
| 175 | + help="Names of measurements to plot. All functions are plotted if omitted.", |
| 176 | + ) |
| 177 | + parser.add_argument( |
| 178 | + "-axis-size", type=float, default=5.0, help="Size of each plot axis in inches." |
| 179 | + ) |
| 180 | + parser.add_argument( |
| 181 | + "-dpi", type=int, default=100, help="Figure resolution in dots per inch." |
| 182 | + ) |
| 183 | + parser.add_argument( |
| 184 | + "-title", type=str, help="Title for figure. No title added if omitted." |
| 185 | + ) |
| 186 | + return parser.parse_args() |
| 187 | + |
| 188 | + |
| 189 | +if __name__ == "__main__": |
| 190 | + args = _parse_cli_arguments() |
| 191 | + functions = ( |
| 192 | + ("forward", "inverse") if args.functions is None else tuple(args.functions) |
| 193 | + ) |
| 194 | + measurements = ( |
| 195 | + ("times", "flops", "memory", "error") |
| 196 | + if args.measurements is None |
| 197 | + else tuple(args.measurements) |
| 198 | + ) |
| 199 | + fig, _ = plot_results_against_bandlimit( |
| 200 | + args.results_path, |
| 201 | + functions=functions, |
| 202 | + measurements=measurements, |
| 203 | + axis_size=args.axis_size, |
| 204 | + fig_dpi=args.dpi, |
| 205 | + ) |
| 206 | + if args.title is not None: |
| 207 | + fig.suptitle(args.title) |
| 208 | + fig.tight_layout() |
| 209 | + fig.savefig(args.output_path) |
0 commit comments