|
| 1 | +from __future__ import annotations |
| 2 | + |
| 3 | +from typing import TYPE_CHECKING |
| 4 | + |
| 5 | +import numpy as np |
| 6 | +import pandas as pd |
| 7 | +import pyarrow as pa |
| 8 | +from lsdb.core.crossmatch.kdtree_match import KdTreeCrossmatch |
| 9 | +from lsdb.core.crossmatch.kdtree_utils import _find_crossmatch_indices, _get_chord_distance |
| 10 | + |
| 11 | +if TYPE_CHECKING: |
| 12 | + from lsdb.catalog import Catalog |
| 13 | + |
| 14 | + |
| 15 | +class MagnitudeDifferenceCrossmatch(KdTreeCrossmatch): |
| 16 | + """Cross-matching algorithm that extends KdTreeCrossmatch to include |
| 17 | + magnitude difference calculations and filtering. |
| 18 | + """ |
| 19 | + |
| 20 | + extra_columns = pd.DataFrame( |
| 21 | + { |
| 22 | + "_dist_arcsec": pd.Series(dtype=pd.ArrowDtype(pa.float64())), |
| 23 | + "_magnitude_difference": pd.Series(dtype=pd.ArrowDtype(pa.float64())), |
| 24 | + } |
| 25 | + ) |
| 26 | + |
| 27 | + @classmethod |
| 28 | + def validate( |
| 29 | + cls, |
| 30 | + left: Catalog, |
| 31 | + right: Catalog, |
| 32 | + left_mag_col: str, |
| 33 | + right_mag_col: str, |
| 34 | + radius_arcsec: float = 1, |
| 35 | + n_neighbors: int = 1, |
| 36 | + ): # pylint: disable=too-many-arguments,arguments-renamed,too-many-positional-arguments |
| 37 | + super().validate(left, right, n_neighbors=n_neighbors, radius_arcsec=radius_arcsec) |
| 38 | + |
| 39 | + if left_mag_col not in left.columns: |
| 40 | + raise ValueError(f"Left catalog must have column '{left_mag_col}'") |
| 41 | + if right_mag_col not in right.columns: |
| 42 | + raise ValueError(f"Right catalog must have column '{right_mag_col}'") |
| 43 | + |
| 44 | + def _calculate_magnitude_differences( |
| 45 | + self, all_matches_df: pd.DataFrame, left_mag_col: str, right_mag_col: str |
| 46 | + ) -> pd.DataFrame: |
| 47 | + all_matches_df["left_mag"] = self.left.iloc[all_matches_df["left_idx"]][left_mag_col].to_numpy() |
| 48 | + all_matches_df["right_mag"] = self.right.iloc[all_matches_df["right_idx"]][right_mag_col].to_numpy() |
| 49 | + all_matches_df["_magnitude_difference"] = np.abs( |
| 50 | + all_matches_df["right_mag"] - all_matches_df["left_mag"] |
| 51 | + ) |
| 52 | + return all_matches_df |
| 53 | + |
| 54 | + def _select_best_matches(self, all_matches_df: pd.DataFrame) -> pd.DataFrame: |
| 55 | + best_match_indices_in_all_matches_df = all_matches_df.groupby("left_idx")[ |
| 56 | + "_magnitude_difference" |
| 57 | + ].idxmin() |
| 58 | + return all_matches_df.loc[best_match_indices_in_all_matches_df].reset_index(drop=True) |
| 59 | + |
| 60 | + # pylint: disable=arguments-differ |
| 61 | + def perform_crossmatch( |
| 62 | + self, |
| 63 | + left_mag_col: str, |
| 64 | + right_mag_col: str, |
| 65 | + radius_arcsec: float, |
| 66 | + n_neighbors: int = 1, |
| 67 | + ) -> tuple[np.ndarray, np.ndarray, pd.DataFrame]: |
| 68 | + max_d_chord = _get_chord_distance(radius_arcsec) |
| 69 | + |
| 70 | + left_xyz, right_xyz = self._get_point_coordinates() |
| 71 | + |
| 72 | + chord_distances_all, left_idx_all, right_idx_all = _find_crossmatch_indices( |
| 73 | + left_xyz=left_xyz, |
| 74 | + right_xyz=right_xyz, |
| 75 | + n_neighbors=n_neighbors, |
| 76 | + max_distance=max_d_chord, |
| 77 | + ) |
| 78 | + |
| 79 | + arc_distances_all = np.degrees(2.0 * np.arcsin(0.5 * chord_distances_all)) * 3600 |
| 80 | + |
| 81 | + all_matches_df = pd.DataFrame( |
| 82 | + { |
| 83 | + "left_idx": left_idx_all, |
| 84 | + "right_idx": right_idx_all, |
| 85 | + "arc_dist_arcsec": arc_distances_all, |
| 86 | + } |
| 87 | + ) |
| 88 | + |
| 89 | + all_matches_df = self._calculate_magnitude_differences(all_matches_df, left_mag_col, right_mag_col) |
| 90 | + final_matches_df = self._select_best_matches(all_matches_df) |
| 91 | + |
| 92 | + final_left_indices = final_matches_df["left_idx"].to_numpy() |
| 93 | + final_right_indices = final_matches_df["right_idx"].to_numpy() |
| 94 | + final_distances = final_matches_df["arc_dist_arcsec"].to_numpy() |
| 95 | + final_magnitude_differences = final_matches_df["_magnitude_difference"].to_numpy() |
| 96 | + |
| 97 | + extra_columns = pd.DataFrame( |
| 98 | + { |
| 99 | + "_dist_arcsec": pd.Series(final_distances, dtype=pd.ArrowDtype(pa.float64())), |
| 100 | + "_magnitude_difference": pd.Series( |
| 101 | + final_magnitude_differences, dtype=pd.ArrowDtype(pa.float64()) |
| 102 | + ), |
| 103 | + } |
| 104 | + ) |
| 105 | + |
| 106 | + return final_left_indices, final_right_indices, extra_columns |
0 commit comments