Skip to content

Commit 86610e9

Browse files
committed
changes to test file
1 parent cc6c7f5 commit 86610e9

File tree

1 file changed

+15
-72
lines changed

1 file changed

+15
-72
lines changed

tests/lsdb_crossmatch/test_mag_difference_crossmatch.py

Lines changed: 15 additions & 72 deletions
Original file line numberDiff line numberDiff line change
@@ -2,8 +2,10 @@
22
import nested_pandas as npd
33
import numpy as np
44
from lsdb.core.crossmatch.kdtree_match import KdTreeCrossmatch
5+
56
from lsdb_crossmatch.mag_difference_crossmatch import MyCrossmatchAlgorithm
67

8+
79
def test_mag_difference_crossmatch(m67_delve_dir, m67_ps1_dir):
810
left_data = lsdb.open_catalog(m67_ps1_dir)
911
right_data = lsdb.open_catalog(m67_delve_dir)
@@ -20,58 +22,32 @@ def test_mag_difference_crossmatch(m67_delve_dir, m67_ps1_dir):
2022
suffixes=["_left", "_right"],
2123
algorithm=KdTreeCrossmatch,
2224
radius_arcsec=0.01 * 3600,
23-
n_neighbors=5,
25+
n_neighbors=5,
2426
).compute()
25-
"""
26-
print("\nKDTREE RESULTS")
27-
print("\nid col left")
28-
print(kdtree_result[id_col_left])
29-
print("\nid col right")
30-
print(kdtree_result[id_col_right])
31-
print("------------")
32-
"""
33-
"""
34-
target_left_id = 10493100048242
35-
count_in_left_catalog = left_data["objID"].value_counts().compute().get(target_left_id, 0)
36-
print(f"\nNumber of times {target_left_id} appears in the original left catalog: {count_in_left_catalog}")
37-
38-
target_right_id = 10493100048242
39-
count_in_right_catalog = right_data["QUICK_OBJECT_ID"].value_counts().compute().get(target_right_id, 0)
40-
41-
print(f"\nNumber of times {target_right_id} appears in the original right catalog: {count_in_right_catalog}")
42-
"""
27+
4328
result = lsdb.crossmatch(
4429
left_data,
4530
right_data,
4631
suffixes=["_left", "_right"],
4732
algorithm=MyCrossmatchAlgorithm,
4833
radius_arcsec=0.01 * 3600,
49-
left_mag_col = left_mag_col,
50-
right_mag_col = right_mag_col,
51-
n_neighbors = 5
34+
left_mag_col=left_mag_col,
35+
right_mag_col=right_mag_col,
36+
n_neighbors=5,
5237
).compute()
53-
"""
54-
print("\nMAG CROSSMATCH RESULTS")
55-
print("\nid col left")
56-
print(result[id_col_left])
57-
print("\nid col right")
58-
print(result[id_col_right])
59-
print("------------")
60-
"""
6138

6239
assert isinstance(result, npd.NestedFrame)
63-
40+
6441
if not result.empty:
6542
assert len(result) == len(result[id_col_left].unique())
6643
assert result[id_col_left].value_counts().max() == 1
67-
68-
44+
6945
if not kdtree_result.empty:
7046
kdtree_result["magnitude_difference"] = np.abs(
7147
kdtree_result[right_mag_col + "_right"] - kdtree_result[left_mag_col + "_left"]
7248
)
73-
74-
target_left_id =122650089529714672
49+
50+
target_left_id = 122650089529714672
7551

7652
if not kdtree_result.empty and target_left_id in kdtree_result[id_col_left].values:
7753
potential_matches_for_target = kdtree_result[kdtree_result[id_col_left] == target_left_id]
@@ -82,47 +58,14 @@ def test_mag_difference_crossmatch(m67_delve_dir, m67_ps1_dir):
8258
).reset_index(drop=True)
8359

8460
expected_best_right_id = potential_matches_for_target.iloc[0][id_col_right]
85-
61+
8662
actual_match_from_my_algo = result[result[id_col_left] == target_left_id]
8763

8864
if not actual_match_from_my_algo.empty:
89-
actual_matched_right_id = actual_match_from_my_algo.iloc[0][id_col_right]
65+
actual_matched_right_id = actual_match_from_my_algo.iloc[0][id_col_right]
9066

91-
assert actual_matched_right_id == expected_best_right_id
67+
assert actual_matched_right_id == expected_best_right_id
9268
else:
9369
print(f"No potential matches found in kdtree_result for {target_left_id}.")
94-
else:
70+
else:
9571
print(f"Target left ID {target_left_id} not found in kdtree_result.")
96-
97-
"""
98-
for target_left_id in result[id_col_left].values:
99-
if not kdtree_result.empty and target_left_id in kdtree_result[id_col_left].values:
100-
potential_matches_for_target = kdtree_result[kdtree_result[id_col_left] == target_left_id].copy()
101-
102-
if not potential_matches_for_target.empty:
103-
potential_matches_for_target = potential_matches_for_target.sort_values(
104-
by="magnitude_difference"
105-
).reset_index(drop=True)
106-
107-
#print(f"\nAll potential matches for {target_left_id}:")
108-
#print(potential_matches_for_target[[id_col_left, id_col_right, "magnitude_difference"]])
109-
110-
expected_best_right_id = potential_matches_for_target.iloc[0][id_col_right]
111-
112-
#print(f"\nExpected best match for {target_left_id}:")
113-
#print(f" Right ID: {expected_best_right_id}")
114-
115-
actual_match_from_my_algo = result[result[id_col_left] == target_left_id]
116-
117-
if not actual_match_from_my_algo.empty:
118-
actual_matched_right_id = actual_match_from_my_algo.iloc[0][id_col_right]
119-
120-
#print(f"\nActual match from MyCrossmatchAlgorithm for {target_left_id}:")
121-
#print(f" Right ID: {actual_matched_right_id}")
122-
123-
assert actual_matched_right_id == expected_best_right_id
124-
else:
125-
print(f"No potential matches found in kdtree_result for {target_left_id}.")
126-
else:
127-
print(f"Target left ID {target_left_id} not found in kdtree_result.")
128-
"""

0 commit comments

Comments
 (0)