Skip to content

Commit 0d2ad4d

Browse files
committed
fix some more typos
1 parent 43e2fd4 commit 0d2ad4d

File tree

1 file changed

+7
-7
lines changed

1 file changed

+7
-7
lines changed

docs/linelists/cdms/cdms.rst

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -159,7 +159,7 @@ shown below:
159159
from scipy.optimize import curve_fit
160160

161161
result = CDMS.get_species_table()
162-
mol = result[result['tag'] == 28503] #do not include signs of TAG for this
162+
mol = result[result['TAG'] == 28503] #do not include signs of TAG for this
163163
keys = [k for k in mol.keys() if 'lg' in k]
164164
temp = np.array([float(k.split('(')[-1].split(')')[0]) for k in keys])
165165
part = list(mol[keys][0])
@@ -234,9 +234,9 @@ We can then compare linear interpolation to the fitted interpolation above:
234234
.. doctest-remote-data::
235235

236236
>>> interp_Q = np.interp(x, temp, 10**part)
237-
>>> pl.plot(x, (10**y-interp_Q)/10**y)
238-
>>> pl.xlabel("Temperature")
239-
>>> pl.ylabel("Fractional difference between linear and fitted")
237+
>>> plt.plot(x, (10**y-interp_Q)/10**y)
238+
>>> plt.xlabel("Temperature")
239+
>>> plt.ylabel("Fractional difference between linear and fitted")
240240

241241
.. plot::
242242
:context:
@@ -257,9 +257,9 @@ We can then compare linear interpolation to the fitted interpolation above:
257257
part = np.array([tryfloat(x) for x in mol[keys][0]])
258258
param, cov = curve_fit(f, temp[np.isfinite(part)], part[np.isfinite(part)])
259259
interp_Q = np.interp(x, temp, 10**part)
260-
pl.plot(x, (10**y-interp_Q)/10**y)
261-
pl.xlabel("Temperature")
262-
pl.ylabel("Fractional difference between linear and fitted")
260+
plt.plot(x, (10**y-interp_Q)/10**y)
261+
plt.xlabel("Temperature")
262+
plt.ylabel("Fractional difference between linear and fitted")
263263

264264

265265
Linear interpolation is a good approximation, in this case, for any moderately

0 commit comments

Comments
 (0)