@@ -25,23 +25,27 @@ Available IRSA catalogs
25
25
26
26
To get a concise list of IRSA catalogs available to query, use the
27
27
`~.astroquery.ipac.irsa.IrsaClass.list_catalogs ` method.
28
- The output consists of two fields for each catalog. To query a
28
+ The output consists of two fields for each catalog, the name of the catalog
29
+ and a very short description. To query a
29
30
specific catalog, the first field can be entered as the value of the
30
31
``catalog `` parameter in the `~.astroquery.ipac.irsa.IrsaClass.query_region ` method.
32
+ You can also use the ``filter `` argument to return only the catalogs with
33
+ name matches to the specified string.
34
+
31
35
32
36
.. doctest-remote-data ::
33
37
34
38
>>> from astroquery.ipac.irsa import Irsa
35
- >>> Irsa.list_catalogs() # doctest: +IGNORE_OUTPUT
36
- {'a1763t2': 'Abell 1763 Source Catalog',
37
- 'a1763t3': 'Abell 1763 MIPS 70 micron Catalog',
38
- 'acs_iphot_sep07': 'COSMOS ACS I-band photometry catalog September 2007',
39
- 'akari_fis': 'Akari/FIS Bright Source Catalogue',
40
- 'akari_irc': 'Akari/IRC Point Source Catalogue',
41
- 'astsight': 'IRAS Minor Planet Survey',
42
- ...
39
+ >>> Irsa.list_catalogs(filter = ' spitzer' ) # doctest: +IGNORE_OUTPUT
40
+ {'spitzer.safires_images': 'Spitzer Archival FIR Extragalactic Survey (SAFIRES) Images',
41
+ 'spitzer.safires_science': 'Spitzer SAFIRES Science Image Metadata',
42
+ 'spitzer.safires_ancillary': 'Spitzer SAFIRES Ancillary Image Metadata',
43
+ 'spitzer.sage_images': 'SAGE Images',
44
+ 'spitzer.sage_mips_mos': 'Spitzer SAGE MIPS Mosaic Image Metadata',
43
45
...
44
- 'xmm_cat_s05': "SWIRE XMM_LSS Region Spring '05 Spitzer Catalog"}
46
+ 'spitzer.ssgss_irs_sl_ll': 'SSGSS IRS SL LL Spectra',
47
+ 'spitzer.swire_images': 'Spitzer Wide-area InfraRed Extragalactic Survey (SWIRE) Images',
48
+ 'herschel.hops_spitzer': 'HOPS Spitzer Metadata'}
45
49
46
50
To get a full list of information available for each available
47
51
catalog, use the ``full `` keyword argument. The output consists of many columns for each catalog.
@@ -52,14 +56,16 @@ the `~astroquery.ipac.irsa.IrsaClass.query_region` method.
52
56
53
57
>>> from astroquery.ipac.irsa import Irsa
54
58
>>> Irsa.list_catalogs(full = True ) # doctest: +IGNORE_OUTPUT
55
- <DALResultsTable length=934>
56
- table_index schema_name table_name description ... irsa_access_flag irsa_nrows irsa_odbc_datasource irsa_spatial_idx_name
57
- int32 object object object ... int32 int64 object object
58
- ----------- ----------- ---------------------------------- --------------------------------------------- ... ---------------- ---------- -------------------- ---------------------
59
- 303 spitzer spitzer.m31irac_image M31IRAC Images ... 30 4 postgres
60
- 304 spitzer mipslg MIPS Local Galaxies Catalog ... 30 240 spitzer SPT_IND_MIPSLG
61
- 305 spitzer spitzer.mips_lg_images MIPS Local Galaxies Images ... 30 606 postgres
62
- ...
59
+ <Table length=951>
60
+ table_index schema_name table_name ... irsa_nrows irsa_odbc_datasource irsa_spatial_idx_name
61
+ int32 object object ... int64 object object
62
+ ----------- ----------- ---------------------------- ... ---------- -------------------- ---------------------
63
+ 101 wax cf_info ... 456480 wax SPTC01
64
+ 102 wax cf_link ... 204143440 wax
65
+ 103 twomass ext_src_c ... 403811 twomass EXT_SRC_CIX413
66
+ 104 wax ecf_info ... 2146 wax SPTETC01
67
+ 105 wax ecf_link ... 473971 wax
68
+ ...
63
69
64
70
65
71
Spatial search types
@@ -286,29 +292,28 @@ To list available collections for SIA queries, the
286
292
`~astroquery.ipac.irsa.IrsaClass.list_collections ` method is provided, and
287
293
will return a `~astropy.table.Table `. You can use the ``servicetype ``
288
294
argument to filter for image or spectral collections using ``'SIA' `` or
289
- ``'SSA' `` respectively:
295
+ ``'SSA' `` respectively. You can also use the ``filter `` argument to show
296
+ only the collections with the given filter strings in the collection names.
290
297
291
298
.. doctest-remote-data ::
292
299
293
300
>>> from astroquery.ipac.irsa import Irsa
294
- >>> Irsa.list_collections(servicetype = ' SIA' )
295
- <Table length=104>
296
- collection
297
- object
298
- ---------------------
299
- akari_allskymaps
300
- blast
301
- bolocam_gps
302
- bolocam_lh
303
- bolocam_planck_sz
304
- ...
305
- wise_allsky
306
- wise_allwise
307
- wise_fdepa
308
- wise_prelim
309
- wise_prelim_2bandcryo
310
- wise_unwise
311
- wise_z0mgs
301
+ >>> Irsa.list_collections(servicetype = ' SIA' , filter = ' spitzer' )
302
+ <Table length=38>
303
+ collection
304
+ object
305
+ -------------------
306
+ spitzer_abell1763
307
+ spitzer_clash
308
+ spitzer_cosmic_dawn
309
+ spitzer_cygx
310
+ spitzer_deepdrill
311
+ ...
312
+ spitzer_spuds
313
+ spitzer_srelics
314
+ spitzer_ssdf
315
+ spitzer_swire
316
+ spitzer_taurus
312
317
313
318
Now open a cutout image for one of the science images. You could either use
314
319
the the IRSA on-premise data or the cloud version of it using the
0 commit comments