4
4
IRSA Queries (`astroquery.ipac.irsa `)
5
5
*************************************
6
6
7
- Getting started
7
+ Getting Started
8
8
===============
9
9
10
10
This module provides access to the public astrophysics catalogs,
16
16
Below we provide examples of common searches.
17
17
18
18
19
- Catalog search
19
+ Catalog Search
20
20
--------------
21
21
22
22
Available IRSA catalogs
@@ -201,8 +201,8 @@ with the ``spatial`` parameter set to ``"All-Sky"``.
201
201
.. TODO: add example, that is runnable, but still potentially useful.
202
202
203
203
204
- Selecting Columns
205
- -----------------
204
+ Selecting columns
205
+ ^^^^^^^^^^^^^^^^^
206
206
207
207
The IRSA service allows to query either a subset of the default columns for
208
208
a given table, or additional columns that are not present by default. This
@@ -246,7 +246,7 @@ available about the columns in a `~astropy.table.Table`.
246
246
247
247
248
248
Async queries
249
- --------------
249
+ ^^^^^^^^^^^^^
250
250
251
251
For bigger queries it is recommended using the ``async_job `` keyword option. When used,
252
252
the query is send in asynchronous mode.
@@ -262,7 +262,7 @@ the query is send in asynchronous mode.
262
262
J000009.78-355736.9 0.0407905 -35.9602605 0.0454 ... 0.0005762523295116 -0.5872239888098030 100102010 8873706189183
263
263
264
264
Direct TAP query to the IRSA server
265
- -----------------------------------
265
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
266
266
267
267
The `~astroquery.ipac.irsa.IrsaClass.query_tap ` method allows for a rich variety of queries. ADQL queries
268
268
provided via the ``query `` parameter is sent directly to the IRSA TAP server, and the result is
@@ -293,8 +293,17 @@ returned as a `~pyvo.dal.TAPResults` object. Its ``to_table`` or ``to_qtable`` m
293
293
202.809023 46.964558 15.874 0.081 ... 15.322 0.188 AAC 000
294
294
295
295
296
+ Image Search
297
+ ------------
298
+
299
+ The `~astroquery.ipac.irsa ` module provides an interface to image searches as well.
300
+ This is primarily based on performing IVOA Simple Image Access, version 2 (SIAv2)
301
+ queries against the IRSA services.
302
+ An auxiliary interface is provided to allow users to identify subsets -- "collections" --
303
+ of the available image data, typically associated with individual missions.
304
+
296
305
Simple image access queries
297
- ---------------------------
306
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^
298
307
299
308
`~astroquery.ipac.irsa.IrsaClass.query_sia ` provides a way to access IRSA's Simple
300
309
Image Access VO service. In the following example we are looking for Spitzer
@@ -308,7 +317,7 @@ Enhanced Imaging products in the centre of the COSMOS field as a `~astropy.table
308
317
`IRSA tutorials
309
318
<https://caltech-ipac.github.io/irsa-tutorials/#accessing-irsa-s-on-premises-holdings-using-vo-protocols> `__.
310
319
311
- For more info, visit the `IRSA documentation <https://irsa.ipac.caltech.edu/ibe/sia_v1.html >`__
320
+ For more info, visit the `IRSA documentation <https://irsa.ipac.caltech.edu/ibe/sia_v1.html >`__.
312
321
313
322
.. doctest-remote-data ::
314
323
@@ -319,35 +328,17 @@ Enhanced Imaging products in the centre of the COSMOS field as a `~astropy.table
319
328
>>> coord = SkyCoord(' 150.01d 2.2d' , frame = ' icrs' )
320
329
>>> spitzer_images = Irsa.query_sia(pos = (coord, 1 * u.arcmin), collection = ' spitzer_seip' )
321
330
322
- To list available collections for SIA queries, the
323
- `~astroquery.ipac.irsa.IrsaClass.list_collections ` method is provided, and
324
- will return a `~astropy.table.Table `. You can use the ``servicetype ``
325
- argument to filter for image or spectral collections using ``'SIA' `` or
326
- ``'SSA' `` respectively. You can also use the ``filter `` argument to show
327
- only the collections with the given filter strings in the collection names.
331
+ The collection name, ``spitzer_seip `` in this example,
332
+ can be obtained from the collection-query API detailed below.
328
333
329
- .. doctest-remote-data ::
334
+ The result, in this case in ``spitzer_images ``, is a table of image metadata in the IVOA "ObsCore" format
335
+ (see the `ObsCore v1.1 documentation
336
+ <https://www.ivoa.net/documents/ObsCore/20170509/index.html> `__).
330
337
331
- >>> from astroquery.ipac.irsa import Irsa
332
- >>> Irsa.list_collections(servicetype = ' SIA' , filter = ' spitzer' )
333
- <Table length=38>
334
- collection
335
- object
336
- -------------------
337
- spitzer_abell1763
338
- spitzer_clash
339
- spitzer_cosmic_dawn
340
- spitzer_cygx
341
- spitzer_deepdrill
342
- ...
343
- spitzer_spuds
344
- spitzer_srelics
345
- spitzer_ssdf
346
- spitzer_swire
347
- spitzer_taurus
348
-
349
- Now open a cutout image for one of the science images. You could either use
350
- the the IRSA on-premise data or the cloud version of it using the
338
+ Now you can open the FITS image and, if desired, make a cutout from
339
+ one of the science images.
340
+ You could either use
341
+ the the IRSA on-premises data or the cloud version of it using the
351
342
``access_url `` or ``cloud_access `` columns. For more info about fits
352
343
cutouts, please visit :ref: `astropy:fits_io_cloud `.
353
344
@@ -360,7 +351,7 @@ cutouts, please visit :ref:`astropy:fits_io_cloud`.
360
351
>>> with fits.open(science_image[' access_url' ], use_fsspec = True ) as hdul:
361
352
... cutout = Cutout2D(hdul[0 ].section, position = coord, size = 2 * u.arcmin, wcs = WCS(hdul[0 ].header))
362
353
363
- Now plot the cutout.
354
+ Now you can plot the cutout.
364
355
365
356
.. doctest-skip ::
366
357
@@ -386,8 +377,39 @@ Now plot the cutout.
386
377
plt.imshow(cutout.data, cmap='grey')
387
378
plt.show()
388
379
380
+ Collection queries
381
+ ^^^^^^^^^^^^^^^^^^
382
+
383
+ To list available collections for SIA queries, the
384
+ `~astroquery.ipac.irsa.IrsaClass.list_collections ` method is provided, and
385
+ will return a `~astropy.table.Table `.
386
+ You can use the ``filter `` argument to show
387
+ only collections with a given search string in the collection names.
388
+ The ``servicetype `` argument is used to filter for image collections, using ``'SIA' ``,
389
+ or spectral collections (also see below), using ``'SSA' ``.
390
+
391
+ .. doctest-remote-data ::
392
+
393
+ >>> from astroquery.ipac.irsa import Irsa
394
+ >>> Irsa.list_collections(servicetype = ' SIA' , filter = ' spitzer' )
395
+ <Table length=38>
396
+ collection
397
+ object
398
+ -------------------
399
+ spitzer_abell1763
400
+ spitzer_clash
401
+ spitzer_cosmic_dawn
402
+ spitzer_cygx
403
+ spitzer_deepdrill
404
+ ...
405
+ spitzer_spuds
406
+ spitzer_srelics
407
+ spitzer_ssdf
408
+ spitzer_swire
409
+ spitzer_taurus
410
+
389
411
390
- Simple spectral access queries
412
+ Simple Spectral Access Queries
391
413
------------------------------
392
414
393
415
`~astroquery.ipac.irsa.IrsaClass.query_ssa ` provides a way to access IRSA's Simple
0 commit comments