@@ -220,6 +220,62 @@ returned as a `~pyvo.dal.TAPResults` object. Its ``to_table`` or ``to_qtable`` m
220
220
202.809023 46.964558 15.874 0.081 ... 15.322 0.188 AAC 000
221
221
222
222
223
+ Simple image access queries
224
+ ---------------------------
225
+
226
+ `~astroquery.ipac.irsa.query_sia ` provides a way to access IRSA's Simple
227
+ Image Access VO service. In the following example we are looking for Spitzer
228
+ Enhanced Imaging products in the centre of the COSMOS field as an `~astropy.table.Table `.
229
+
230
+ .. doctest-remote-data ::
231
+
232
+ >>> from astroquery.ipac.irsa import Irsa
233
+ >>> from astropy.coordinates import SkyCoord
234
+ >>> from astropy import units as u
235
+ >>>
236
+ >>> coord = SkyCoord(' 150.01d 2.2d' , frame = ' icrs' )
237
+ >>> spitzer_images = Irsa.query_sia(pos = (coord, 1 * u.arcmin), collection = ' spitzer_seip' ).to_table()
238
+
239
+ Now open a cutout image for one of the science images. You could either use
240
+ the the IRSA on-premise data or the cloud version of it using the
241
+ ``access_url `` or ``cloud_access `` columns:
242
+
243
+ .. doctest-remote-data ::
244
+
245
+ >>> from astropy.io import fits
246
+ >>> from astropy.nddata import Cutout2D
247
+ >>> from astropy.wcs import WCS
248
+ >>> science_image = spitzer_images[spitzer_images[' dataproduct_subtype' ] == ' science' ][0 ]
249
+ >>> with fits.open(science_image[' access_url' ], use_fsspec = True ) as hdul:
250
+ ... cutout = Cutout2D(hdul[0 ].section, position = coord, size = 2 * u.arcmin, wcs = WCS(hdul[0 ].header))
251
+
252
+ Now plot the cutout.
253
+
254
+ .. doctest-skip ::
255
+
256
+ >>> import matplotlib.pyplot as plt
257
+ >>> plt.imshow(cutout.data, cmap = ' grey' )
258
+ >>> plt.show()
259
+
260
+ .. plot ::
261
+
262
+ from astroquery.ipac.irsa import Irsa
263
+ from astropy.coordinates import SkyCoord
264
+ from astropy import units as u
265
+ from astropy.io import fits
266
+ from astropy.nddata import Cutout2D
267
+ from astropy.wcs import WCS
268
+ import matplotlib.pyplot as plt
269
+ coord = SkyCoord('150.01d 2.2d', frame='icrs')
270
+ spitzer_images = Irsa.query_sia(pos=(coord, 1 * u.arcmin), collection='spitzer_seip').to_table()
271
+ science_image = spitzer_images[spitzer_images['dataproduct_subtype'] == 'science'][0]
272
+ with fits.open(science_image['access_url'], use_fsspec=True) as hdul:
273
+ cutout = Cutout2D(hdul[0].section, position=coord, size=2 *
274
+ u.arcmin, wcs=WCS(hdul[0].header))
275
+ plt.imshow(cutout.data, cmap='grey')
276
+ plt.show()
277
+
278
+
223
279
Other Configurations
224
280
--------------------
225
281
0 commit comments