@@ -152,11 +152,11 @@ def plot_turnover_table(autocorrelation_data, quantile_turnover):
152152 for period in sorted (quantile_turnover .keys ()):
153153 for quantile , p_data in quantile_turnover [period ].iteritems ():
154154 turnover_table .loc ["Quantile {} Mean Turnover " .format (quantile ),
155- "{}" .format (period )] = p_data .mean ()
155+ "{}D " .format (period )] = p_data .mean ()
156156 auto_corr = pd .DataFrame ()
157157 for period , p_data in autocorrelation_data .iteritems ():
158158 auto_corr .loc ["Mean Factor Rank Autocorrelation" ,
159- "{}" .format (period )] = p_data .mean ()
159+ "{}D " .format (period )] = p_data .mean ()
160160
161161 print ("Turnover Analysis" )
162162 utils .print_table (turnover_table .apply (lambda x : x .round (3 )))
@@ -607,7 +607,7 @@ def plot_factor_rank_auto_correlation(factor_autocorrelation,
607607 if ax is None :
608608 f , ax = plt .subplots (1 , 1 , figsize = (18 , 6 ))
609609
610- factor_autocorrelation .plot (title = '{} Period Factor Rank Autocorrelation'
610+ factor_autocorrelation .plot (title = '{}D Period Factor Rank Autocorrelation'
611611 .format (period ), ax = ax )
612612 ax .set (ylabel = 'Autocorrelation Coefficient' , xlabel = '' )
613613 ax .axhline (0.0 , linestyle = '-' , color = 'black' , lw = 1 )
@@ -629,7 +629,7 @@ def plot_top_bottom_quantile_turnover(quantile_turnover, period=1, ax=None):
629629 quantile_turnover: pd.Dataframe
630630 Quantile turnover (each DataFrame column a quantile).
631631 period: int, optional
632- Period over which to calculate the turnover
632+ Period over which to calculate the turnover.
633633 ax : matplotlib.Axes, optional
634634 Axes upon which to plot.
635635
@@ -646,7 +646,7 @@ def plot_top_bottom_quantile_turnover(quantile_turnover, period=1, ax=None):
646646 turnover = pd .DataFrame ()
647647 turnover ['top quantile turnover' ] = quantile_turnover [max_quantile ]
648648 turnover ['bottom quantile turnover' ] = quantile_turnover [min_quantile ]
649- turnover .plot (title = '{} Period Top and Bottom Quantile Turnover'
649+ turnover .plot (title = '{}D Period Top and Bottom Quantile Turnover'
650650 .format (period ), ax = ax , alpha = 0.6 , lw = 0.8 )
651651 ax .set (ylabel = 'Proportion Of Names New To Quantile' , xlabel = "" )
652652
@@ -711,7 +711,11 @@ def plot_monthly_ic_heatmap(mean_monthly_ic, ax=None):
711711 return ax
712712
713713
714- def plot_cumulative_returns (factor_returns , period , freq , title = None , ax = None ):
714+ def plot_cumulative_returns (factor_returns ,
715+ period ,
716+ freq = None ,
717+ title = None ,
718+ ax = None ):
715719 """
716720 Plots the cumulative returns of the returns series passed in.
717721
@@ -720,7 +724,7 @@ def plot_cumulative_returns(factor_returns, period, freq, title=None, ax=None):
720724 factor_returns : pd.Series
721725 Period wise returns of dollar neutral portfolio weighted by factor
722726 value.
723- period: pandas.Timedelta or string
727+ period : pandas.Timedelta or string
724728 Length of period for which the returns are computed (e.g. 1 day)
725729 if 'period' is a string it must follow pandas.Timedelta constructor
726730 format (e.g. '1 days', '1D', '30m', '3h', '1D1h', etc)
@@ -742,7 +746,7 @@ def plot_cumulative_returns(factor_returns, period, freq, title=None, ax=None):
742746 if ax is None :
743747 f , ax = plt .subplots (1 , 1 , figsize = (18 , 6 ))
744748
745- factor_returns = perf .cumulative_returns (factor_returns , period , freq )
749+ factor_returns = perf .cumulative_returns (factor_returns )
746750
747751 factor_returns .plot (ax = ax , lw = 3 , color = 'forestgreen' , alpha = 0.6 )
748752 ax .set (ylabel = 'Cumulative Returns' ,
@@ -756,7 +760,7 @@ def plot_cumulative_returns(factor_returns, period, freq, title=None, ax=None):
756760
757761def plot_cumulative_returns_by_quantile (quantile_returns ,
758762 period ,
759- freq ,
763+ freq = None ,
760764 ax = None ):
761765 """
762766 Plots the cumulative returns of various factor quantiles.
@@ -765,7 +769,7 @@ def plot_cumulative_returns_by_quantile(quantile_returns,
765769 ----------
766770 quantile_returns : pd.DataFrame
767771 Returns by factor quantile
768- period: pandas.Timedelta or string
772+ period : pandas.Timedelta or string
769773 Length of period for which the returns are computed (e.g. 1 day)
770774 if 'period' is a string it must follow pandas.Timedelta constructor
771775 format (e.g. '1 days', '1D', '30m', '3h', '1D1h', etc)
@@ -787,7 +791,8 @@ def plot_cumulative_returns_by_quantile(quantile_returns,
787791
788792 ret_wide = quantile_returns .unstack ('factor_quantile' )
789793
790- cum_ret = ret_wide .apply (perf .cumulative_returns , period = period , freq = freq )
794+ cum_ret = ret_wide .apply (perf .cumulative_returns )
795+
791796 cum_ret = cum_ret .loc [:, ::- 1 ] # we want negative quantiles as 'red'
792797
793798 cum_ret .plot (lw = 2 , ax = ax , cmap = cm .coolwarm )
0 commit comments