|
| 1 | +# Fine-Grained Authorization for RAG Applications using LangChain (or LangGraph) |
| 2 | + |
| 3 | +This guide explains how to enforce **fine-grained, per-document authorization** in Retrieval-Augmented Generation (RAG) pipelines using **SpiceDB**, **LangChain**, and **LangGraph**. |
| 4 | + |
| 5 | +It demonstrates how to plug authorization directly into an LLM workflow using a post-retrieval filter powered by SpiceDB — ensuring that **every document used by the LLM has been explicitly authorized** for the requesting user. |
| 6 | + |
| 7 | +--- |
| 8 | + |
| 9 | +## Overview |
| 10 | + |
| 11 | +Modern AI-assisted applications use RAG to retrieve documents and generate responses. |
| 12 | +However, **standard RAG pipelines do not consider permissions** - meaning LLMs may hallucinate or leak information from unauthorized sources. |
| 13 | + |
| 14 | +This guide shows how to solve that problem using: |
| 15 | + |
| 16 | +- **SpiceDB** as the source of truth for authorization |
| 17 | +- **spicedb-rag-authorization** (library) for fast post-retrieval filtering |
| 18 | +- **LangChain** for LLM pipelines (or) |
| 19 | +- **LangGraph** for stateful, multi-step workflows and agents |
| 20 | + |
| 21 | +The library implements **post-filter authorization**, meaning: |
| 22 | + |
| 23 | +1. Retrieve the best semantic matches. |
| 24 | +2. Filter them using SpiceDB permission checks. |
| 25 | +3. Feed *only authorized documents* to the LLM. |
| 26 | + |
| 27 | +--- |
| 28 | + |
| 29 | +## 1. Installation |
| 30 | + |
| 31 | +The package is not yet published on PyPI. |
| 32 | +Install directly from GitHub: |
| 33 | + |
| 34 | +```bash |
| 35 | +pip install "git+https://github.com/sohanmaheshwar/spicedb-rag-authorization.git#egg=spicedb-rag-auth[all]" |
| 36 | +``` |
| 37 | + |
| 38 | +Or clone locally: |
| 39 | + |
| 40 | +```python |
| 41 | +import sys |
| 42 | +sys.path.append("/path/to/spicedb-rag-authorization") |
| 43 | +``` |
| 44 | + |
| 45 | +--- |
| 46 | + |
| 47 | +## 2. Prerequisites |
| 48 | + |
| 49 | +This guide will demonstrate how to do fine-grained authorization with SpiceDB, for RAG running locally. |
| 50 | +To run in production, run SpiceDB on [AuthZed Cloud](https://authzed.com/docs/spicedb/getting-started/protecting-a-blog#create-a-permissions-system-on-authzed-cloud) |
| 51 | + |
| 52 | +### Run SpiceDB locally |
| 53 | + |
| 54 | +```bash |
| 55 | +docker run --rm -p 50051:50051 authzed/spicedb serve --grpc-preshared-key "sometoken" --grpc-no-tls |
| 56 | +``` |
| 57 | + |
| 58 | +### Create a SpiceDB schema |
| 59 | + |
| 60 | +``` |
| 61 | +definition user {} |
| 62 | +
|
| 63 | +definition article { |
| 64 | + relation viewer: user |
| 65 | + permission view = viewer |
| 66 | +} |
| 67 | +``` |
| 68 | + |
| 69 | +We use [zed](https://github.com/authzed/zed) - the CLI for SpiceDB, to write schema and relationships. |
| 70 | +Typically, this would be a gRPC/API call in your application. |
| 71 | + |
| 72 | +```bash |
| 73 | +zed schema write <(cat << EOF |
| 74 | +definition user {} |
| 75 | +definition article { |
| 76 | + relation viewer: user |
| 77 | + permission view = viewer |
| 78 | +} |
| 79 | +EOF |
| 80 | +) --insecure |
| 81 | +``` |
| 82 | + |
| 83 | +### Add relationships |
| 84 | + |
| 85 | +```bash |
| 86 | +zed relationship create article:doc1 viewer user:alice --insecure |
| 87 | +zed relationship create article:doc2 viewer user:bob --insecure |
| 88 | +zed relationship create article:doc4 viewer user:alice --insecure |
| 89 | +``` |
| 90 | + |
| 91 | +--- |
| 92 | + |
| 93 | +## 3. Document Metadata Requirements |
| 94 | + |
| 95 | +Every document used in RAG **must include a resource ID** in metadata. |
| 96 | +This is what enables SpiceDB to check which `user` has what permissions for each `doc`. |
| 97 | + |
| 98 | +```python |
| 99 | +Document( |
| 100 | + page_content="Example text", |
| 101 | + metadata={"article_id": "doc4"} |
| 102 | +) |
| 103 | +``` |
| 104 | + |
| 105 | +The metadata key must match the configured `resource_id_key`. |
| 106 | + |
| 107 | +--- |
| 108 | + |
| 109 | +## 4. LangChain Integration |
| 110 | + |
| 111 | +This is the simplest way to add authorization to a LangChain RAG pipeline. |
| 112 | + |
| 113 | +[LangChain](https://www.langchain.com/langchain) is a framework for building LLM-powered applications by composing modular components such as retrievers, prompts, memory, tools, and models. |
| 114 | +It provides a high-level abstraction called the LangChain Expression Language (LCEL) which lets you construct RAG pipelines as reusable, declarative graphs — without needing to manually orchestrate each step. |
| 115 | + |
| 116 | +You would typically use LangChain when: |
| 117 | + |
| 118 | +- You want a composable pipeline that chains together retrieval, prompting, model calls, and post-processing. |
| 119 | +- You are building a RAG system where each step (retriever → filter → LLM → parser) should be easily testable and swappable. |
| 120 | +- You need integrations with many LLM providers, vector stores, retrievers, and tools. |
| 121 | +- You want built-in support for streaming, parallelism, or structured output. |
| 122 | + |
| 123 | +LangChain is an excellent fit for straightforward RAG pipelines where the control flow is mostly linear. |
| 124 | +For more complex, branching, stateful, or agent-style workflows, you would likely [choose LangGraph](#5-langgraph-integration) instead. |
| 125 | + |
| 126 | +**Core component:** `SpiceDBAuthFilter` or `SpiceDBAuthLambda`. |
| 127 | + |
| 128 | +### Example Pipeline |
| 129 | + |
| 130 | +```python |
| 131 | +auth = SpiceDBAuthFilter( |
| 132 | + spicedb_endpoint="localhost:50051", |
| 133 | + spicedb_token="sometoken", |
| 134 | + resource_type="article", |
| 135 | + resource_id_key="article_id", |
| 136 | +) |
| 137 | +``` |
| 138 | + |
| 139 | +Build your chain once: |
| 140 | + |
| 141 | +```python |
| 142 | +chain = ( |
| 143 | + RunnableParallel({ |
| 144 | + "context": retriever | auth, # Authorization happens here |
| 145 | + "question": RunnablePassthrough(), |
| 146 | + }) |
| 147 | + | prompt |
| 148 | + | llm |
| 149 | + | StrOutputParser() |
| 150 | +) |
| 151 | +``` |
| 152 | + |
| 153 | +Invoke: |
| 154 | + |
| 155 | +```python |
| 156 | +# Pass user at runtime - reuse same chain for different users |
| 157 | +answer = await chain.ainvoke( |
| 158 | + "Your question?", |
| 159 | + config={"configurable": {"subject_id": "alice"}} |
| 160 | +) |
| 161 | + |
| 162 | +# Different user, same chain |
| 163 | +answer = await chain.ainvoke( |
| 164 | + "Another question?", |
| 165 | + config={"configurable": {"subject_id": "bob"}} |
| 166 | +) |
| 167 | +``` |
| 168 | + |
| 169 | +--- |
| 170 | + |
| 171 | +## 5. LangGraph Integration |
| 172 | + |
| 173 | +[LangGraph](https://www.langchain.com/langgraph) is a framework for building stateful, multi-step, and branching LLM applications using a graph-based architecture. |
| 174 | +Unlike LangChain’s linear pipelines, LangGraph allows you to define explicit nodes, edges, loops, and conditional branches — enabling **deterministic**, reproducible, agent-like workflows. |
| 175 | + |
| 176 | +You would choose LangGraph when: |
| 177 | + |
| 178 | +- You are building multi-step RAG pipelines (retrieve → authorize → rerank → generate → reflect). |
| 179 | +- Your application needs state management across steps (conversation history, retrieved docs, user preferences). |
| 180 | +- You require a strong separation of responsibilities (e.g., retriever node, authorization node, generator node). |
| 181 | + |
| 182 | +LangGraph is ideal for more advanced AI systems, such as conversational RAG assistants, agents with tool-use, or pipelines with complex authorization or business logic. |
| 183 | + |
| 184 | +The library provides: |
| 185 | + |
| 186 | +- `RAGAuthState` — a TypedDict defining the required state fields |
| 187 | +- `create_auth_node()` — auto-configured authorization node |
| 188 | +- `AuthorizationNode` — reusable class-based node |
| 189 | + |
| 190 | +--- |
| 191 | + |
| 192 | +## 5.1 LangGraph Example |
| 193 | + |
| 194 | +```python |
| 195 | +from langgraph.graph import StateGraph, END |
| 196 | +from spicedb_rag_auth import create_auth_node, RAGAuthState |
| 197 | +from langchain_openai import ChatOpenAI |
| 198 | +from langchain_core.prompts import ChatPromptTemplate |
| 199 | + |
| 200 | +# Use the provided RAGAuthState TypedDict |
| 201 | +graph = StateGraph(RAGAuthState) |
| 202 | + |
| 203 | +# Define your nodes |
| 204 | +def retrieve_node(state): |
| 205 | + """Retrieve documents from vector store""" |
| 206 | + docs = retriever.invoke(state["question"]) |
| 207 | + return {"retrieved_documents": docs} |
| 208 | + |
| 209 | +def generate_node(state): |
| 210 | + """Generate answer from authorized documents""" |
| 211 | + # Create prompt |
| 212 | + prompt = ChatPromptTemplate.from_messages([ |
| 213 | + ("system", "Answer based only on the provided context."), |
| 214 | + ("human", "Question: {question}\n\nContext:\n{context}") |
| 215 | + ]) |
| 216 | + |
| 217 | + # Format context from authorized documents |
| 218 | + context = "\n\n".join([doc.page_content for doc in state["authorized_documents"]]) |
| 219 | + |
| 220 | + # Generate answer |
| 221 | + llm = ChatOpenAI(model="gpt-4o-mini") |
| 222 | + messages = prompt.format_messages(question=state["question"], context=context) |
| 223 | + answer = llm.invoke(messages) |
| 224 | + |
| 225 | + return {"answer": answer.content} |
| 226 | + |
| 227 | +# Add nodes |
| 228 | +graph.add_node("retrieve", retrieve_node) |
| 229 | +graph.add_node("authorize", create_auth_node( |
| 230 | + spicedb_endpoint="localhost:50051", |
| 231 | + spicedb_token="sometoken", |
| 232 | + resource_type="article", |
| 233 | + resource_id_key="article_id", |
| 234 | +)) |
| 235 | +graph.add_node("generate", generate_node) |
| 236 | + |
| 237 | +# Wire it up |
| 238 | +graph.set_entry_point("retrieve") |
| 239 | +graph.add_edge("retrieve", "authorize") |
| 240 | +graph.add_edge("authorize", "generate") |
| 241 | +graph.add_edge("generate", END) |
| 242 | + |
| 243 | +# Compile and run |
| 244 | +app = graph.compile() |
| 245 | +result = await app.ainvoke({ |
| 246 | + "question": "What is SpiceDB?", |
| 247 | + "subject_id": "alice", |
| 248 | +}) |
| 249 | + |
| 250 | +print(result["answer"]) # The actual answer to the question |
| 251 | +``` |
| 252 | + |
| 253 | +--- |
| 254 | + |
| 255 | +## 5.2 Extending State with LangGraph |
| 256 | + |
| 257 | +Add custom fields to track additional state like conversation history, user preferences, or metadata. |
| 258 | + |
| 259 | +```python |
| 260 | +class MyCustomState(RAGAuthState): |
| 261 | + user_preferences: dict |
| 262 | + conversation_history: list |
| 263 | + |
| 264 | +graph = StateGraph(MyCustomState) |
| 265 | +# ... add nodes and edges |
| 266 | +``` |
| 267 | + |
| 268 | +**When to use:** |
| 269 | + |
| 270 | +- Multi-turn conversations that need history |
| 271 | +- Personalized responses based on user preferences |
| 272 | +- Complex workflows requiring additional context |
| 273 | + |
| 274 | +**Example use case:** A chatbot that remembers previous questions and tailors responses based on user role (engineer vs manager). |
| 275 | + |
| 276 | +--- |
| 277 | + |
| 278 | +## 5.3 Reusable Class-Based Authorization Node |
| 279 | + |
| 280 | +Create reusable authorization node instances that can be shared across multiple graphs or configured with custom state key mappings. |
| 281 | + |
| 282 | +```python |
| 283 | +from spicedb_rag_auth import AuthorizationNode |
| 284 | + |
| 285 | +auth_node = AuthorizationNode( |
| 286 | + spicedb_endpoint="localhost:50051", |
| 287 | + spicedb_token="sometoken", |
| 288 | + resource_type="article", |
| 289 | + resource_id_key="article_id", |
| 290 | +) |
| 291 | + |
| 292 | +graph = StateGraph(RAGAuthState) |
| 293 | +graph.add_node("authorize", auth_node) |
| 294 | +``` |
| 295 | + |
| 296 | +You can define it once and reuse everywhere. |
| 297 | + |
| 298 | +```python |
| 299 | +article_auth = AuthorizationNode(resource_type="article", ...) |
| 300 | +video_auth = AuthorizationNode(resource_type="video", ...) |
| 301 | + |
| 302 | +# Use in multiple graphs |
| 303 | +blog_graph.add_node("auth", article_auth) |
| 304 | +media_graph.add_node("auth", video_auth) |
| 305 | +learning_graph.add_node("auth_articles", article_auth) |
| 306 | +``` |
| 307 | + |
| 308 | +**When to use:** |
| 309 | + |
| 310 | +- Multiple graphs need the same authorization logic |
| 311 | +- Your state uses different key names than the defaults |
| 312 | +- Building testable code (easy to swap prod/test instances) |
| 313 | +- Team collaboration (security team provides authZ nodes) |
| 314 | + |
| 315 | +**Example use case:** A multi-resource platform (articles, videos, code snippets) where each resource type has its own authorization node that's reused across different workflows. |
| 316 | + |
| 317 | +For production applications, you'll often use a mix of Option 2 and 3: A custom state for your workflow + reusable authZ nodes for flexibility. |
| 318 | +Here's an example: |
| 319 | + |
| 320 | +```python |
| 321 | +class CustomerSupportState(RAGAuthState): |
| 322 | + conversation_history: list |
| 323 | + customer_tier: str |
| 324 | + sentiment_score: float |
| 325 | + |
| 326 | +docs_auth = AuthorizationNode(resource_type="support_doc", ...) |
| 327 | +kb_auth = AuthorizationNode(resource_type="knowledge_base", ...) |
| 328 | + |
| 329 | +graph = StateGraph(CustomerSupportState) |
| 330 | +graph.add_node("auth_docs", docs_auth) |
| 331 | +graph.add_node("auth_kb", kb_auth) |
| 332 | +``` |
| 333 | + |
| 334 | +--- |
| 335 | + |
| 336 | +## 6. Metrics & Observability |
| 337 | + |
| 338 | +The library exposes: |
| 339 | + |
| 340 | +- number of retrieved documents |
| 341 | +- number authorized |
| 342 | +- denied resource IDs |
| 343 | +- latency per SpiceDB check |
| 344 | + |
| 345 | +### In LangChain |
| 346 | + |
| 347 | +```python |
| 348 | +auth = SpiceDBAuthFilter(..., subject_id="alice", return_metrics=True) |
| 349 | +result = await auth.ainvoke(docs) |
| 350 | + |
| 351 | +print(result.authorized_documents) |
| 352 | +print(result.total_authorized) |
| 353 | +print(result.check_latency_ms) |
| 354 | +# ... all other metrics |
| 355 | +``` |
| 356 | + |
| 357 | +### In LangGraph |
| 358 | + |
| 359 | +Metrics appear in `auth_results` in the graph state. |
| 360 | + |
| 361 | +```python |
| 362 | +graph = StateGraph(RAGAuthState) |
| 363 | +# ... add nodes including create_auth_node() |
| 364 | + |
| 365 | +result = await app.ainvoke({"question": "...", "subject_id": "alice"}) |
| 366 | + |
| 367 | +# Access metrics from state |
| 368 | +print(result["auth_results"]["total_retrieved"]) |
| 369 | +print(result["auth_results"]["total_authorized"]) |
| 370 | +print(result["auth_results"]["authorization_rate"]) |
| 371 | +print(result["auth_results"]["denied_resource_ids"]) |
| 372 | +print(result["auth_results"]["check_latency_ms"]) |
| 373 | +``` |
| 374 | + |
| 375 | +--- |
| 376 | + |
| 377 | +## 7. Complete Example |
| 378 | + |
| 379 | +See the full example in the [repo here](<https://github.com/sohanmaheshwar/spicedb-rag-authorization>) |
| 380 | + |
| 381 | +- `langchain_example.py` |
| 382 | +- `README_langchain.md` |
| 383 | + |
| 384 | +--- |
| 385 | + |
| 386 | +## 8. Next Steps |
| 387 | + |
| 388 | +- Read [this guide](https://authzed.com/blog/building-a-multi-tenant-rag-with-fine-grain-authorization-using-motia-and-spicedb) on creating a production-grade RAG with SpiceDB & Motia.dev |
| 389 | +- Check out this [self-guided workshop](https://github.com/authzed/workshops/tree/main/secure-rag-pipelines) for a closer look at how fine-grained authorization with SpiceDB works in RAG. |
| 390 | +This guide also includes the pre-filtration technique. |
0 commit comments