@@ -103,7 +103,6 @@ def test_fit_pSMAC(self):
103103 initial_configurations_via_metalearning = 0 ,
104104 ensemble_size = 0 )
105105 automl .fit (X_train , Y_train )
106-
107106 # Create a 'dummy model' for the first run, which has an accuracy of
108107 # more than 99%; it should be in the final ensemble if the ensemble
109108 # building of the second AutoSklearn classifier works correct
@@ -303,6 +302,8 @@ def test_multilabel(self):
303302 self .assertEqual (predictions .shape , (50 , 3 ))
304303 score = f1_macro (Y_test , predictions )
305304 self .assertGreaterEqual (score , 0.9 )
305+ probs = automl .predict_proba (X_train )
306+ self .assertAlmostEqual (np .mean (probs ), 0.33333333333333331 )
306307
307308 def test_binary (self ):
308309 output = os .path .join (self .test_dir , '..' , '.tmp_binary_fit' )
@@ -376,4 +377,4 @@ def test_conversion_of_list_to_np(self, fit_ensemble, refit, fit):
376377 self .assertIsInstance (refit .call_args [0 ][1 ], np .ndarray )
377378 automl .fit_ensemble (y )
378379 self .assertEqual (fit_ensemble .call_count , 1 )
379- self .assertIsInstance (fit_ensemble .call_args [0 ][0 ], np .ndarray )
380+ self .assertIsInstance (fit_ensemble .call_args [0 ][0 ], np .ndarray )
0 commit comments