@@ -575,82 +575,34 @@ def fit(
575575 Fit both optimizes the machine learning models and builds an ensemble
576576 out of them.
577577
578- # TODO PR1213
579- #
580- # `task: Optional[int]` and `is_classification`
581- #
582- # `AutoML` tries to identify the task itself with `sklearn.type_of_target`,
583- # leaving little for the subclasses to do.
584- # Except this failes when type_of_target(y) == "multiclass".
585- #
586- # "multiclass" be mean either REGRESSION or MULTICLASS_CLASSIFICATION,
587- # and so this is where the subclasses are used to determine which.
588- # However, this could also be deduced from the `is_classification`
589- # parameter.
590- #
591- # In the future, there is little need for the subclasses of `AutoML`
592- # and no need for the `task` parameter. The extra functionality
593- # provided by `AutoMLClassifier` in predict could be moved to
594- # `AutoSklearnClassifier`, leaving `AutoML` to just produce raw
595- # outputs and simplifying the heirarchy.
596- #
597- # `load_models`
598- #
599- # This parameter is likely not needed as they are loaded upon demand
600- # throughout `AutoML`.
601- # Creating a @property models that loads models into self.models_ is
602- # not loaded would remove the need for this parameter and simplyify
603- # the verification of `load if self.models_ is None` to one place.
604- #
605- # `only_return_configuration_space`
606- #
607- # This parameter is indicative of a need to create a seperate method
608- # for this as the functionality of `fit` and what it returns can vary.
609-
610578 Parameters
611579 ----------
612- X : {array-like, sparse matrix}, shape (n_samples, n_features)
580+ X : np.ndarray | pd.DataFrame | list | spmatrix
613581 The training input samples.
614582
615- y : array-like, shape (n_samples) or (n_samples, n_outputs)
583+ y : np.ndarray | pd.DataFrame | pd.Series | list
616584 The target classes.
617585
618- task : Optional[int]
619- The identifier for the task AutoML is to perform.
620-
621- X_test : Optional[{array-like, sparse matrix}, shape (n_samples, n_features)]
586+ X_test : np.ndarray | pd.DataFrame | list | spmatrix | None = None
622587 Test data input samples. Will be used to save test predictions for
623588 all models. This allows to evaluate the performance of Auto-sklearn
624589 over time.
625590
626- y_test : Optional[array-like, shape (n_samples) or (n_samples, n_outputs)]
591+ y_test : np.ndarray | pd.DataFrame | pd.Series | list | None = None
627592 Test data target classes. Will be used to calculate the test error
628593 of all models. This allows to evaluate the performance of
629594 Auto-sklearn over time.
630595
631- feat_type : Optional[ list] ,
596+ feat_type : list[str] | None = None ,
632597 List of str of `len(X.shape[1])` describing the attribute type.
633598 Possible types are `Categorical` and `Numerical`. `Categorical`
634599 attributes will be automatically One-Hot encoded. The values
635600 used for a categorical attribute must be integers, obtained for
636601 example by `sklearn.preprocessing.LabelEncoder
637602 <https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelEncoder.html>`_.
638603
639- dataset_name : Optional[str]
640- Create nicer output. If None, a string will be determined by the
641- md5 hash of the dataset.
642-
643- only_return_configuration_space: bool = False
644- If set to true, fit will only return the configuration space that will
645- be used for model search. Otherwise fitting will be performed and an
646- ensemble created.
647-
648- load_models: bool = True
649- If true, this will load the models into memory once complete.
650-
651- is_classification: bool = False
652- Indicates whether this is a classification task if True or a
653- regression task if False.
604+ dataset_name : str | None = None
605+ Create nicer output. If None, a pseudo-random hash will be used
654606
655607 Returns
656608 -------
0 commit comments