@@ -53,15 +53,7 @@ def refit(self, X, y):
5353 def fit_ensemble (self , y , task = None , metric = None , precision = '32' ,
5454 dataset_name = None , ensemble_nbest = None ,
5555 ensemble_size = None ):
56- """Build the ensemble.
5756
58- This method only needs to be called in the parallel mode.
59-
60- Returns
61- -------
62- self
63-
64- """
6557 return self ._automl .fit_ensemble (y , task , metric , precision ,
6658 dataset_name , ensemble_nbest ,
6759 ensemble_size )
@@ -225,6 +217,16 @@ def __init__(self,
225217 an ensemble.
226218 * ``'model'`` : do not save any model files
227219
220+ configuration_mode : ``SMAC`` or ``ROAR``
221+ Defines the configuration mode as described in the paper
222+ `Sequential Model-Based Optimization for General Algorithm
223+ Configuration <http://aad.informatik.uni-freiburg.de/papers/11-LION5-SMAC.pdf>`_:
224+
225+ * ``SMAC`` (default): Sequential Model-based Algorithm
226+ Configuration, which is a Bayesian optimization algorithm
227+ * ``ROAR``: Random Online Aggressive Racing, which is basically
228+ random search
229+
228230 Attributes
229231 ----------
230232
@@ -305,6 +307,46 @@ def fit(self, *args, **kwargs):
305307 def fit_ensemble (self , y , task = None , metric = None , precision = '32' ,
306308 dataset_name = None , ensemble_nbest = None ,
307309 ensemble_size = None ):
310+ """Fit an ensemble to models trained during an optimization process.
311+
312+ All parameters are ``None`` by default. If no other value is given,
313+ the default values which were set in a call to ``fit()`` are used.
314+
315+ Parameters
316+ ----------
317+ y : array-like
318+ Target values.
319+
320+ task : int
321+ A constant from the module ``autosklearn.constants``. Determines
322+ the task type (binary classification, multiclass classification,
323+ multilabel classification or regression).
324+
325+ metric : callable, optional (default='acc_metric')
326+ An instance of :class:`autosklearn.metrics.Scorer` as created by
327+ :meth:`autosklearn.metrics.make_scorer`. These are the `Built-in
328+ Metrics`_.
329+
330+ precision : str
331+ Numeric precision used when loading ensemble data. Can be either
332+ ``'16'``, ``'32'`` or ``'64'``.
333+
334+ dataset_name : str
335+ Name of the current data set.
336+
337+ ensemble_nbest : int
338+ Determines how many models should be considered from the ensemble
339+ building. This is inspired by a concept called library pruning
340+ introduced in `Getting Most out of Ensemble Selection`.
341+
342+ ensemble_size : int
343+ Size of the ensemble built by `Ensomble Selection`.
344+
345+ Returns
346+ -------
347+ self
348+
349+ """
308350 if self ._automl is None :
309351 self ._automl = self .build_automl ()
310352 return self ._automl .fit_ensemble (y , task , metric , precision ,
@@ -338,12 +380,17 @@ def fit(self, X, y,
338380 The target classes.
339381
340382 metric : callable, optional (default='acc_metric')
341- An instance of ``autosklearn.metrics.Scorer``.
383+ An instance of :class:`autosklearn.metrics.Scorer` as created by
384+ :meth:`autosklearn.metrics.make_scorer`. These are the `Built-in
385+ Metrics`_.
342386
343387 feat_type : list, optional (default=None)
344388 List of str of `len(X.shape[1])` describing the attribute type.
345389 Possible types are `Categorical` and `Numerical`. `Categorical`
346- attributes will be automatically One-Hot encoded.
390+ attributes will be automatically One-Hot encoded. The values
391+ used for a categorical attribute must be integers, obtainde for
392+ example by `sklearn.preprocessing.LabelEncoder
393+ <http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelEncoder.html>`_.
347394
348395 dataset_name : str, optional (default=None)
349396 Create nicer output. If None, a string will be determined by the
0 commit comments