|
37 | 37 | from autosklearn.evaluation.abstract_evaluator import _fit_and_suppress_warnings |
38 | 38 | from autosklearn.evaluation.train_evaluator import _fit_with_budget |
39 | 39 | from autosklearn.metrics import calculate_score |
| 40 | +from autosklearn.util.backend import Backend |
40 | 41 | from autosklearn.util.stopwatch import StopWatch |
41 | 42 | from autosklearn.util.logging_ import get_logger, setup_logger |
42 | 43 | from autosklearn.util import pipeline, RE_PATTERN |
@@ -95,7 +96,7 @@ def send_warnings_to_log( |
95 | 96 | class AutoML(BaseEstimator): |
96 | 97 |
|
97 | 98 | def __init__(self, |
98 | | - backend, |
| 99 | + backend: Backend, |
99 | 100 | time_left_for_this_task, |
100 | 101 | per_run_time_limit, |
101 | 102 | initial_configurations_via_metalearning=25, |
@@ -179,7 +180,7 @@ def __init__(self, |
179 | 180 | raise ValueError('disable_evaluator_output must be of type bool ' |
180 | 181 | 'or list.') |
181 | 182 | if isinstance(self._disable_evaluator_output, list): |
182 | | - allowed_elements = ['model', 'y_optimization'] |
| 183 | + allowed_elements = ['model', 'cv_model', 'y_optimization', 'y_test', 'y_valid'] |
183 | 184 | for element in self._disable_evaluator_output: |
184 | 185 | if element not in allowed_elements: |
185 | 186 | raise ValueError("List member '%s' for argument " |
@@ -313,7 +314,7 @@ def _do_dummy_prediction(self, datamanager, num_run): |
313 | 314 | cost_for_crash=get_cost_of_crash(self._metric), |
314 | 315 | **self._resampling_strategy_arguments) |
315 | 316 |
|
316 | | - status, cost, runtime, additional_info = ta.run(1, cutoff=self._time_for_task) |
| 317 | + status, cost, runtime, additional_info = ta.run(num_run, cutoff=self._time_for_task) |
317 | 318 | if status == StatusType.SUCCESS: |
318 | 319 | self._logger.info("Finished creating dummy predictions.") |
319 | 320 | else: |
@@ -511,14 +512,6 @@ def fit( |
511 | 512 | ) |
512 | 513 |
|
513 | 514 | self._backend._make_internals_directory() |
514 | | - try: |
515 | | - os.makedirs(self._backend.get_model_dir()) |
516 | | - except (OSError, FileExistsError): |
517 | | - raise |
518 | | - try: |
519 | | - os.makedirs(self._backend.get_cv_model_dir()) |
520 | | - except (OSError, FileExistsError): |
521 | | - raise |
522 | 515 |
|
523 | 516 | self._task = datamanager.info['task'] |
524 | 517 | self._label_num = datamanager.info['label_num'] |
@@ -942,9 +935,9 @@ def _load_best_individual_model(self): |
942 | 935 | # SingleBest contains the best model found by AutoML |
943 | 936 | ensemble = SingleBest( |
944 | 937 | metric=self._metric, |
945 | | - random_state=self._seed, |
| 938 | + seed=self._seed, |
946 | 939 | run_history=self.runhistory_, |
947 | | - model_dir=self._backend.get_model_dir(), |
| 940 | + backend=self._backend, |
948 | 941 | ) |
949 | 942 | self._logger.warning( |
950 | 943 | "No valid ensemble was created. Please check the log" |
|
0 commit comments