Skip to content

Commit a10b384

Browse files
authored
Prepare new release (#1081)
* prepare new release * fix unit test
1 parent 52d7d65 commit a10b384

File tree

3 files changed

+26
-2
lines changed

3 files changed

+26
-2
lines changed

autosklearn/__version__.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,4 @@
11
"""Version information."""
22

33
# The following line *must* be the last in the module, exactly as formatted:
4-
__version__ = "0.12.3dev"
4+
__version__ = "0.12.3"

doc/releases.rst

Lines changed: 24 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -8,6 +8,30 @@
88
git log 2e29eba.. --format="%aN <%aE>" --reverse | perl -e 'my %dedupe; while (<STDIN>) { print unless $dedupe{$_}++}'
99
1010

11+
========
12+
Releases
13+
========
14+
15+
Version 0.12.3
16+
==============
17+
18+
* FIX #1061: Fixes a bug where the model could not be printed in a jupyter notebook.
19+
* FIX #1075: Fixes a bug where the ensemble builder would wrongly prune good models for loss
20+
functions (i.e. functions that need to be minimized such as ``logloss`` or ``mean_squared_error``.
21+
* FIX #1079: Fixes a bug where ``AutoMLClassifier.cv_results`` and ``AutoMLRegressor.cv_results``
22+
could rank results in opposite order for loss functions (i.e. functions that need to be minimized
23+
such as ``logloss`` or ``mean_squared_error``.
24+
* FIX: Fixes a bug in offline meta-data generation that could lead to a deadlock.
25+
* MAINT #1076: Uses the correct multiprocessing context for computing meta-features
26+
* MAINT: Cleanup readme and main directory
27+
28+
Contributors v0.12.3
29+
********************
30+
31+
* Matthias Feurer
32+
* ROHIT AGARWAL
33+
* Francisco Rivera
34+
1135
========
1236
Releases
1337
========

test/test_data/test_feature_validator.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -39,7 +39,7 @@ def input_data_featuretest(request):
3939
array[50, 0:5] = np.nan
4040
return array
4141
elif request.param == 'numpy_numericalonly_nan':
42-
array = np.random.uniform(10, size=(100, 10))
42+
array = np.random.uniform(10, size=(100, 10)).astype('float')
4343
array[50, 0:5] = np.nan
4444
# Somehow array is changed to dtype object after np.nan
4545
return array.astype('float')

0 commit comments

Comments
 (0)