Skip to content

Commit a5481cb

Browse files
authored
reduce sphinx warnings (#933)
1 parent 07b8f2e commit a5481cb

File tree

3 files changed

+30
-30
lines changed

3 files changed

+30
-30
lines changed

doc/api.rst

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -17,7 +17,7 @@ Classification
1717
:members:
1818
:inherited-members: show_models, fit_ensemble, refit, sprint_statistics
1919

20-
.. autoclass:: autosklearn.experimental.AutoSklearn2Classifier
20+
.. autoclass:: autosklearn.experimental.askl2.AutoSklearn2Classifier
2121
:inherited-members: show_models, fit_ensemble, refit, sprint_statistics, fit, predict, predict_proba
2222

2323

doc/manual.rst

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -121,7 +121,7 @@ to build an ensemble based on the models’ prediction for the validation set. T
121121

122122
* ``ensemble_size`` determines the maximal size of the ensemble. If it is set to zero, no ensemble will be constructed.
123123
* ``ensemble_nbest`` allows the user to directly specify the number of models considered for the ensemble. This hyperparameter can be an integer *n*, such that only the best *n* models are used in the final ensemble. If a float between 0.0 and 1.0 is provided, ``ensemble_nbest`` would be interpreted as a fraction suggesting the percentage of models to use in the ensemble building process (namely, if ensemble_nbest is a float, library pruning is implemented as described in `Caruana et al. (2006) <https://dl.acm.org/doi/10.1109/ICDM.2006.76>`_).
124-
* ``max_models_on_disc`` defines the maximum number of models that are kept on the disc, as a mechanism to control the amount of disc space consumed by *auto-sklearn*. Throughout the automl process, different individual models are optimized, and their predictions (and other metadata) is stored on disc. The user can set the upper bound on how many models are acceptable to keep on disc, yet this variable takes priority in the definition of the number of models used by the ensemble builder (that is, the minimum of ``ensemble_size``, ``ensemble_nbest`` and ``max_models_on_disc`` determines the maximal amount of models used in the ensemble). If set to None, this feature is disabled.
124+
* ``max_models_on_disc`` defines the maximum number of models that are kept on the disc, as a mechanism to control the amount of disc space consumed by *auto-sklearn*. Throughout the automl process, different individual models are optimized, and their predictions (and other metadata) is stored on disc. The user can set the upper bound on how many models are acceptable to keep on disc, yet this variable takes priority in the definition of the number of models used by the ensemble builder (that is, the minimum of ``ensemble_size``, ``ensemble_nbest`` and ``max_models_on_disc`` determines the maximal amount of models used in the ensemble). If set to None, this feature is disabled.
125125

126126
Inspecting the results
127127
======================

doc/releases.rst

Lines changed: 28 additions & 28 deletions
Original file line numberDiff line numberDiff line change
@@ -17,8 +17,8 @@ Version 0.8
1717
* ADD #803: multi-output regression
1818
* ADD #893: new Auto-sklearn mode Auto-sklearn 2.0
1919

20-
Contributors
21-
************
20+
Contributors v0.8.0
21+
*******************
2222

2323
* Chu-Cheng Fu
2424
* Matthias Feurer
@@ -43,8 +43,8 @@ Version 0.7.1
4343
* FIX #876: allow Auto-sklearn model to be cloned
4444
* FIX #879: allow 1-D binary predictions
4545

46-
Contributors
47-
************
46+
Contributors v0.7.1
47+
*******************
4848

4949
* Matthias Feurer
5050
* Xiaodong DENG
@@ -67,8 +67,8 @@ Version 0.7.0
6767
* FIX #778: support for python 3.8
6868
* FIX #781: support for pandas 1.x
6969

70-
Contributors
71-
************
70+
Contributors v0.7.0
71+
*******************
7272

7373
* Andrew Nader
7474
* Gui Miotto
@@ -88,8 +88,8 @@ Version 0.6.0
8888
* FIX #680: Remove unnecessary print statement
8989
* FIX #600: Remove unnecessary warning
9090

91-
Contributors
92-
************
91+
Contributors v0.6.0
92+
*******************
9393

9494
* Guilherme Miotto
9595
* Matthias Feurer
@@ -103,8 +103,8 @@ Version 0.5.2
103103
* ADD #676: Allow brackets [ ] inside the temporary and output directory paths.
104104
* ADD #424: (Experimental) scripts to reproduce the results from the original Auto-sklearn paper.
105105

106-
Contributors
107-
************
106+
Contributors v0.5.2
107+
*******************
108108

109109
* Jin Woo Ahn
110110
* Herilalaina Rakotoarison
@@ -123,8 +123,8 @@ Version 0.5.1
123123
* FIX #626: Fixes an issue where losses were not minimized, but maximized.
124124
* MAINT #646: Do no longer restrict the numpy version to be less than 1.14.5.
125125

126-
Contributors
127-
************
126+
Contributors v0.5.1
127+
*******************
128128

129129
* Jin Woo Ahn
130130
* Taneli Mielikäinen
@@ -141,8 +141,8 @@ Version 0.5.0
141141
* TEST #614: Test installation with clean Ubuntu on travis-ci.
142142
* MAINT: Fixed broken link and typo in the documentation.
143143

144-
Contributors
145-
************
144+
Contributors v0.5.0
145+
*******************
146146

147147
* Mohd Shahril
148148
* Adrian
@@ -168,8 +168,8 @@ Version 0.4.2
168168
* MAINT: remove dependency on the six package
169169
* MAINT: upgrade to XGBoost 0.80
170170

171-
Contributors
172-
************
171+
Contributors v0.4.2
172+
*******************
173173

174174
* Taneli Mielikäinen
175175
* Matthias Feurer
@@ -201,8 +201,8 @@ Version 0.4.1
201201
* Travis-ci now runs flake8 to enforce pep8 style guide, and uses travis-ci instead of circle-ci
202202
for deployment.
203203

204-
Contributors
205-
************
204+
Contributors v0.4.1
205+
*******************
206206

207207
* Matthias Feurer
208208
* Manuel Streuhofer
@@ -249,8 +249,8 @@ Version 0.4.0
249249
* Safeguard Auto-sklearn against deleting directories it did not create (Issue
250250
`#317 <https://github.com/automl/auto-sklearn/issues/317>`_.
251251

252-
Contributors
253-
************
252+
Contributors v0.4.0
253+
*******************
254254

255255
* Matthias Feurer
256256
* kaa
@@ -278,8 +278,8 @@ Version 0.3.0
278278
* Allow passing an SMBO object into the ``AutoSklearnClassifier`` and
279279
``AutoSklearnRegressor``.
280280

281-
Contributors
282-
************
281+
Contributors v0.3.0
282+
*******************
283283

284284
* Matthias Feurer
285285
* Jesper van Engelen
@@ -297,8 +297,8 @@ Version 0.2.1
297297
* Typo fixes in print statements.
298298
* New method to retrieve the models used in the final ensemble.
299299

300-
Contributors
301-
************
300+
Contributors v0.2.1
301+
*******************
302302

303303
* Matthias Feurer
304304
* Katharina Eggensperger
@@ -321,8 +321,8 @@ Version 0.2.0
321321
* *auto-sklearn* can use multiprocessing in calls to ``predict()`` and
322322
``predict_proba``. By `Laurent Sorber <https://github.com/lsorber>`_.
323323

324-
Contributors
325-
************
324+
Contributors v0.2.0
325+
*******************
326326

327327
* Matthias Feurer
328328
* Katharina Eggensperger
@@ -334,8 +334,8 @@ Version 0.1.x
334334

335335
There are no release notes for auto-sklearn prior to version 0.2.0.
336336

337-
Contributors
338-
************
337+
Contributors v0.1.x
338+
*******************
339339

340340
* Matthias Feurer
341341
* Katharina Eggensperger

0 commit comments

Comments
 (0)