@@ -369,7 +369,7 @@ def _fit(self, datamanager):
369369 if time_left_for_smac <= 0 :
370370 self ._logger .warning ("Not starting SMAC because there is no time "
371371 "left." )
372- self . _proc_smac = None
372+ _proc_smac = None
373373 else :
374374 if self ._per_run_time_limit is None or \
375375 self ._per_run_time_limit > time_left_for_smac :
@@ -380,25 +380,25 @@ def _fit(self, datamanager):
380380 else :
381381 per_run_time_limit = self ._per_run_time_limit
382382
383- self . _proc_smac = AutoMLSMBO (config_space = self .configuration_space ,
384- dataset_name = self ._dataset_name ,
385- backend = self ._backend ,
386- total_walltime_limit = time_left_for_smac ,
387- func_eval_time_limit = per_run_time_limit ,
388- memory_limit = self ._ml_memory_limit ,
389- data_memory_limit = self ._data_memory_limit ,
390- watcher = self ._stopwatch ,
391- start_num_run = num_run ,
392- num_metalearning_cfgs = self ._initial_configurations_via_metalearning ,
393- config_file = configspace_path ,
394- smac_iters = self ._max_iter_smac ,
395- seed = self ._seed ,
396- metadata_directory = self ._metadata_directory ,
397- resampling_strategy = self ._resampling_strategy ,
398- resampling_strategy_args = self ._resampling_strategy_arguments ,
399- acquisition_function = self .acquisition_function ,
400- shared_mode = self ._shared_mode )
401- self ._proc_smac .run_smbo ()
383+ _proc_smac = AutoMLSMBO (config_space = self .configuration_space ,
384+ dataset_name = self ._dataset_name ,
385+ backend = self ._backend ,
386+ total_walltime_limit = time_left_for_smac ,
387+ func_eval_time_limit = per_run_time_limit ,
388+ memory_limit = self ._ml_memory_limit ,
389+ data_memory_limit = self ._data_memory_limit ,
390+ watcher = self ._stopwatch ,
391+ start_num_run = num_run ,
392+ num_metalearning_cfgs = self ._initial_configurations_via_metalearning ,
393+ config_file = configspace_path ,
394+ smac_iters = self ._max_iter_smac ,
395+ seed = self ._seed ,
396+ metadata_directory = self ._metadata_directory ,
397+ resampling_strategy = self ._resampling_strategy ,
398+ resampling_strategy_args = self ._resampling_strategy_arguments ,
399+ acquisition_function = self .acquisition_function ,
400+ shared_mode = self ._shared_mode )
401+ self .runhistory_ = _proc_smac .run_smbo ()
402402
403403 self ._proc_ensemble = None
404404 self ._load_models ()
@@ -569,8 +569,8 @@ def grid_scores_(self):
569569 scores_per_config = defaultdict (list )
570570 config_list = list ()
571571
572- for run_key in self ._proc_smac . runhistory .data :
573- run_value = self ._proc_smac . runhistory .data [run_key ]
572+ for run_key in self .runhistory_ .data :
573+ run_value = self .runhistory_ .data [run_key ]
574574
575575 config_id = run_key .config_id
576576 cost = run_value .cost
@@ -583,7 +583,7 @@ def grid_scores_(self):
583583 for config_id in config_list :
584584 scores = [1 - score for score in scores_per_config [config_id ]]
585585 mean_score = np .mean (scores )
586- config = self ._proc_smac . runhistory .ids_config [config_id ]
586+ config = self .runhistory_ .ids_config [config_id ]
587587
588588 grid_score = _CVScoreTuple (config .get_dictionary (), mean_score ,
589589 scores )
@@ -624,10 +624,10 @@ def cv_results_(self):
624624 mean_fit_time = []
625625 params = []
626626 status = []
627- for run_key in self ._proc_smac . runhistory .data :
628- run_value = self ._proc_smac . runhistory .data [run_key ]
627+ for run_key in self .runhistory_ .data :
628+ run_value = self .runhistory_ .data [run_key ]
629629 config_id = run_key .config_id
630- config = self ._proc_smac . runhistory .ids_config [config_id ]
630+ config = self .runhistory_ .ids_config [config_id ]
631631
632632 param_dict = config .get_dictionary ()
633633 params .append (param_dict )
0 commit comments