Skip to content

Commit d067fe9

Browse files
committed
CI try to reduce memory consumption to avoid MemoryError
1 parent 0f114d8 commit d067fe9

File tree

1 file changed

+10
-12
lines changed

1 file changed

+10
-12
lines changed

test/test_pipeline/test_classification.py

Lines changed: 10 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -635,14 +635,15 @@ def test_predict_batched(self):
635635

636636
# Multilabel
637637
X_train, Y_train, X_test, Y_test = get_dataset(dataset='digits')
638-
Y_train = np.array([(y, 26 - y) for y in Y_train])
638+
Y_train = np.array(list([(list([1 if i != y else 0 for i in range(10)]))
639+
for y in Y_train]))
639640
cls.fit(X_train, Y_train)
640641
X_test_ = X_test.copy()
641642
prediction_ = cls.predict(X_test_)
642643
cls_predict = mock.Mock(wraps=cls.pipeline_)
643644
cls.pipeline_ = cls_predict
644645
prediction = cls.predict(X_test, batch_size=20)
645-
self.assertEqual((1647, 2), prediction.shape)
646+
self.assertEqual((1647, 10), prediction.shape)
646647
self.assertEqual(83, cls_predict.predict.call_count)
647648
assert_array_almost_equal(prediction_, prediction)
648649

@@ -684,14 +685,15 @@ def test_predict_batched_sparse(self):
684685
# Multilabel
685686
X_train, Y_train, X_test, Y_test = get_dataset(dataset='digits',
686687
make_sparse=True)
687-
Y_train = np.array([(y, 26 - y) for y in Y_train])
688+
Y_train = np.array(list([(list([1 if i != y else 0 for i in range(10)]))
689+
for y in Y_train]))
688690
cls.fit(X_train, Y_train)
689691
X_test_ = X_test.copy()
690692
prediction_ = cls.predict(X_test_)
691693
cls_predict = mock.Mock(wraps=cls.pipeline_)
692694
cls.pipeline_ = cls_predict
693695
prediction = cls.predict(X_test, batch_size=20)
694-
self.assertEqual((1647, 2), prediction.shape)
696+
self.assertEqual((1647, 10), prediction.shape)
695697
self.assertEqual(83, cls_predict.predict.call_count)
696698
assert_array_almost_equal(prediction_, prediction)
697699

@@ -716,10 +718,8 @@ def test_predict_proba_batched(self):
716718
# Multilabel
717719
cls = SimpleClassificationPipeline(default)
718720
X_train, Y_train, X_test, Y_test = get_dataset(dataset='digits')
719-
Y_train_ = np.zeros((Y_train.shape[0], 10))
720-
for i, y in enumerate(Y_train):
721-
Y_train_[i][y] = 1
722-
Y_train = Y_train_
721+
Y_train = np.array(list([(list([1 if i != y else 0 for i in range(10)]))
722+
for y in Y_train]))
723723
cls.fit(X_train, Y_train)
724724
X_test_ = X_test.copy()
725725
prediction_ = cls.predict_proba(X_test_)
@@ -772,10 +772,8 @@ def test_predict_proba_batched_sparse(self):
772772
cls = SimpleClassificationPipeline(config)
773773
X_train, Y_train, X_test, Y_test = get_dataset(dataset='digits',
774774
make_sparse=True)
775-
Y_train_ = np.zeros((Y_train.shape[0], 10))
776-
for i, y in enumerate(Y_train):
777-
Y_train_[i][y] = 1
778-
Y_train = Y_train_
775+
Y_train = np.array(list([(list([1 if i != y else 0 for i in range(10)]))
776+
for y in Y_train]))
779777
cls.fit(X_train, Y_train)
780778
X_test_ = X_test.copy()
781779
prediction_ = cls.predict_proba(X_test_)

0 commit comments

Comments
 (0)