@@ -635,14 +635,15 @@ def test_predict_batched(self):
635635
636636 # Multilabel
637637 X_train , Y_train , X_test , Y_test = get_dataset (dataset = 'digits' )
638- Y_train = np .array ([(y , 26 - y ) for y in Y_train ])
638+ Y_train = np .array (list ([(list ([1 if i != y else 0 for i in range (10 )]))
639+ for y in Y_train ]))
639640 cls .fit (X_train , Y_train )
640641 X_test_ = X_test .copy ()
641642 prediction_ = cls .predict (X_test_ )
642643 cls_predict = mock .Mock (wraps = cls .pipeline_ )
643644 cls .pipeline_ = cls_predict
644645 prediction = cls .predict (X_test , batch_size = 20 )
645- self .assertEqual ((1647 , 2 ), prediction .shape )
646+ self .assertEqual ((1647 , 10 ), prediction .shape )
646647 self .assertEqual (83 , cls_predict .predict .call_count )
647648 assert_array_almost_equal (prediction_ , prediction )
648649
@@ -684,14 +685,15 @@ def test_predict_batched_sparse(self):
684685 # Multilabel
685686 X_train , Y_train , X_test , Y_test = get_dataset (dataset = 'digits' ,
686687 make_sparse = True )
687- Y_train = np .array ([(y , 26 - y ) for y in Y_train ])
688+ Y_train = np .array (list ([(list ([1 if i != y else 0 for i in range (10 )]))
689+ for y in Y_train ]))
688690 cls .fit (X_train , Y_train )
689691 X_test_ = X_test .copy ()
690692 prediction_ = cls .predict (X_test_ )
691693 cls_predict = mock .Mock (wraps = cls .pipeline_ )
692694 cls .pipeline_ = cls_predict
693695 prediction = cls .predict (X_test , batch_size = 20 )
694- self .assertEqual ((1647 , 2 ), prediction .shape )
696+ self .assertEqual ((1647 , 10 ), prediction .shape )
695697 self .assertEqual (83 , cls_predict .predict .call_count )
696698 assert_array_almost_equal (prediction_ , prediction )
697699
@@ -716,10 +718,8 @@ def test_predict_proba_batched(self):
716718 # Multilabel
717719 cls = SimpleClassificationPipeline (default )
718720 X_train , Y_train , X_test , Y_test = get_dataset (dataset = 'digits' )
719- Y_train_ = np .zeros ((Y_train .shape [0 ], 10 ))
720- for i , y in enumerate (Y_train ):
721- Y_train_ [i ][y ] = 1
722- Y_train = Y_train_
721+ Y_train = np .array (list ([(list ([1 if i != y else 0 for i in range (10 )]))
722+ for y in Y_train ]))
723723 cls .fit (X_train , Y_train )
724724 X_test_ = X_test .copy ()
725725 prediction_ = cls .predict_proba (X_test_ )
@@ -772,10 +772,8 @@ def test_predict_proba_batched_sparse(self):
772772 cls = SimpleClassificationPipeline (config )
773773 X_train , Y_train , X_test , Y_test = get_dataset (dataset = 'digits' ,
774774 make_sparse = True )
775- Y_train_ = np .zeros ((Y_train .shape [0 ], 10 ))
776- for i , y in enumerate (Y_train ):
777- Y_train_ [i ][y ] = 1
778- Y_train = Y_train_
775+ Y_train = np .array (list ([(list ([1 if i != y else 0 for i in range (10 )]))
776+ for y in Y_train ]))
779777 cls .fit (X_train , Y_train )
780778 X_test_ = X_test .copy ()
781779 prediction_ = cls .predict_proba (X_test_ )
0 commit comments