@@ -113,32 +113,46 @@ def __init__(self,
113113 ----------
114114 time_left_for_this_task : int, optional (default=3600)
115115 Time limit in seconds for the search of appropriate
116- models. By increasing this value, *auto-sklearn* will find better
117- configurations .
116+ models. By increasing this value, *auto-sklearn* has a higher
117+ chance of finding better models .
118118
119119 per_run_time_limit : int, optional (default=360)
120- Time limit for a single call to machine learning model.
120+ Time limit for a single call to the machine learning model.
121+ Model fitting will be terminated if the machine learning
122+ algorithm runs over the time limit. Set this value high enough so
123+ that typical machine learning algorithms can be fit on the
124+ training data.
121125
122126 initial_configurations_via_metalearning : int, optional (default=25)
127+ Initialize the hyperparameter optimization algorithm with this
128+ many configurations which worked well on previously seen
129+ datasets. Disable if the hyperparameter optimization algorithm
130+ should start from scratch.
123131
124132 ensemble_size : int, optional (default=50)
133+ Number of models added to the ensemble built by `Ensemble
134+ selection from libraries of models. Models are drawn with
135+ replacement.
125136
126137 ensemble_nbest : int, optional (default=50)
138+ Only consider the ``ensemble_nbest`` models when building an
139+ ensemble. Implements `Model Library Pruning` from `Getting the
140+ most out of ensemble selection`.
127141
128142 seed : int, optional (default=1)
129143
130144 ml_memory_limit : int, optional (3000)
131- Memory limit for the machine learning algorithm. If the machine
132- learning algorithm allocates tries to allocate more memory,
133- its evaluation will be stopped .
145+ Memory limit in MB for the machine learning algorithm.
146+ `auto-sklearn` will stop fitting the machine learning algorithm if
147+ it tries to allocate more than `ml_memory_limit` MB .
134148
135149 include_estimators : dict, optional (None)
136- If None all possible estimators are used. Otherwise specifies set of
137- estimators to use
150+ If None, all possible estimators are used. Otherwise specifies
151+ set of estimators to use
138152
139153 include_preprocessors : dict, optional (None)
140- If None all possible preprocessors are used. Otherwise specifies set of
141- preprocessors to use
154+ If None all possible preprocessors are used. Otherwise specifies set
155+ of preprocessors to use
142156
143157 resampling_strategy : string, optional ('holdout')
144158 how to to handle overfitting, might need 'resampling_strategy_arguments'
@@ -148,24 +162,21 @@ def __init__(self,
148162 fit where possible
149163 * 'cv': crossvalidation, requires 'folds'
150164 * 'nested-cv': crossvalidation, requires 'outer-folds, 'inner-folds'
151- * 'partial-cv': crossvalidation, requires 'folds' , calls
152- iterative fit where possible
153165
154166 resampling_strategy_arguments : dict, optional if 'holdout' (None)
155167 Additional arguments for resampling_strategy
156168 * 'holdout': None
157169 * 'holdout-iterative-fit': None
158170 * 'cv': {'folds': int}
159171 * 'nested-cv': {'outer_folds': int, 'inner_folds'
160- * 'partial-cv': {'folds': int}
161172
162173 tmp_folder : string, optional (None)
163- folder to store configuration output, if None automatically use
164- /tmp/autosklearn_tmp_$pid_$random_number
174+ folder to store configuration output and log files , if `` None``
175+ automatically use `` /tmp/autosklearn_tmp_$pid_$random_number``
165176
166177 output_folder : string, optional (None)
167- folder to store trained models , if None automatically use
168- /tmp/autosklearn_output_$pid_$random_number
178+ folder to store predictions for optional test set , if `` None``
179+ automatically use `` /tmp/autosklearn_output_$pid_$random_number``
169180
170181 delete_tmp_folder_after_terminate: string, optional (True)
171182 remove tmp_folder, when finished. If tmp_folder is None
@@ -176,10 +187,10 @@ def __init__(self,
176187 output_dir will always be deleted
177188
178189 shared_mode: bool, optional (False)
179- run smac in shared-model-node. This only works if arguments
180- tmp_folder and output_folder are given and sets both
181- delete_tmp_folder_after_terminate and
182- delete_output_folder_after_terminate to False.
190+ Run smac in shared-model-node. This only works if arguments
191+ `` tmp_folder`` and `` output_folder`` are given and both
192+ `` delete_tmp_folder_after_terminate`` and
193+ `` delete_output_folder_after_terminate`` are set to False.
183194
184195 Attributes
185196 ----------
@@ -193,6 +204,14 @@ def __init__(self,
193204 cross-validation folds
194205 * ``cv_validation_scores``, the list of scores for each fold
195206
207+ cv_results_ : dict of numpy (masked) ndarrays
208+ A dict with keys as column headers and values as columns, that can be
209+ imported into a pandas ``DataFrame``.
210+
211+ This attribute is a backward port to already support the advanced
212+ output of scikit-learn 0.18. Not all keys returned by scikit-learn
213+ are supported yet.
214+
196215 """
197216 self .time_left_for_this_task = time_left_for_this_task
198217 self .per_run_time_limit = per_run_time_limit
@@ -276,7 +295,7 @@ def fit(self, X, y,
276295 metric = 'acc_metric' ,
277296 feat_type = None ,
278297 dataset_name = None ):
279- """Fit *autosklearn * to given training set (X, y).
298+ """Fit *auto-sklearn * to given training set (X, y).
280299
281300 Parameters
282301 ----------
@@ -308,8 +327,6 @@ def fit(self, X, y,
308327 self
309328
310329 """
311- # Fit is supposed to be idempotent!
312- # But not if we use share_mode.
313330 return super (AutoSklearnClassifier , self ).fit (X , y , metric , feat_type , dataset_name )
314331
315332 def predict (self , X ):
0 commit comments